splice site selection
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 23)

H-INDEX

52
(FIVE YEARS 4)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 281
Author(s):  
Carlos A. Niño ◽  
Rossella Scotto di Perrotolo ◽  
Simona Polo

Splicing alterations have been widely documented in tumors where the proliferation and dissemination of cancer cells is supported by the expression of aberrant isoform variants. Splicing is catalyzed by the spliceosome, a ribonucleoprotein complex that orchestrates the complex process of intron removal and exon ligation. In recent years, recurrent hotspot mutations in the spliceosome components U1 snRNA, SF3B1, and U2AF1 have been identified across different tumor types. Such mutations in principle are highly detrimental for cells as all three spliceosome components are crucial for accurate splice site selection: the U1 snRNA is essential for 3′ splice site recognition, and SF3B1 and U2AF1 are important for 5′ splice site selection. Nonetheless, they appear to be selected to promote specific types of cancers. Here, we review the current molecular understanding of these mutations in cancer, focusing on how they influence splice site selection and impact on cancer development.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 746
Author(s):  
Lauren A. Levesque ◽  
Scott Roy ◽  
Nicole Salazar

CXCR3 is a chemokine receptor with two well-characterized isoforms that have unique, context-dependent roles: CXCR3-A and CXCR3-B, which are produced through alternative 3′ splice site selection (A3SS). RNA-seq data from The Cancer Genome Atlas (TCGA) were used to correlate CXCR3 expression with breast cancer progression. This analysis revealed significant CXCR3 expression patterns associated with survival and differential expression between the tumor and adjacent normal tissue. TCGA data were used to estimate abundance of immune cells in breast cancer, which demonstrated the association of CXCR3 with immune infiltration, particularly in the triple-negative subtype. Given the importance of A3SS in CXCR3, genome-wide analysis of A3SS events was performed to identify events that were differentially spliced between breast cancer tissue and adjacent normal tissue. A total of 481 splicing events in 424 genes were found to be differentially spliced. The parent genes of differentially spliced events were enriched in RNA processing and splicing functions, indicating an underappreciated role of A3SS in the integrated splicing network of breast cancer. These results further validated the role of CXCR3 in immune infiltration of tumors, while raising questions about the role of A3SS splicing.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009563
Author(s):  
Brian Joseph ◽  
Eric C. Lai

Accurate splice site selection is critical for fruitful gene expression. Recently, the mammalian EJC was shown to repress competing, cryptic, splice sites (SS). However, the evolutionary generality of this remains unclear. Here, we demonstrate the Drosophila EJC suppresses hundreds of functional cryptic SS, even though most bear weak splicing motifs and are seemingly incompetent. Mechanistically, the EJC directly conceals cryptic splicing elements by virtue of its position-specific recruitment, preventing aberrant SS definition. Unexpectedly, we discover the EJC inhibits scores of regenerated 5’ and 3’ recursive SS on segments that have already undergone splicing, and that loss of EJC regulation triggers faulty resplicing of mRNA. An important corollary is that certain intronless cDNA constructs yield unanticipated, truncated transcripts generated by resplicing. We conclude the EJC has conserved roles to defend transcriptome fidelity by (1) repressing illegitimate splice sites on pre-mRNAs, and (2) preventing inadvertent activation of such sites on spliced segments.


2021 ◽  
Author(s):  
Yuan Gao ◽  
Kuan-Ting Lin ◽  
Yang Yang ◽  
Jialin Bai ◽  
Li Wang ◽  
...  

Intronic splicing enhancers and silencers (ISEs and ISSs) are two groups of splicing-regulatory elements (SREs) that play critical roles in determining splice-site selection, particularly for alternatively spliced introns or exons. SREs are often short motifs; their mutation or dysregulation of their cognate proteins frequently causes aberrant splicing and results in disease. To date, however, knowledge about SRE sequences and how they regulate splicing remains limited. Here, using an SMN2 minigene, we generated a complete pentamer-sequence library that comprises all possible combinations of 5 nucleotides in intron 7, at a fixed site downstream of the 5′ splice site. We systematically analyzed the effects of all 1023 mutant pentamers on exon 7 splicing, in comparison to the wild-type minigene, in HEK293 cells. Our data show that the majority of pentamers significantly affect exon 7 splicing: 584 of them are stimulatory and 230 are inhibitory. To identify actual SREs, we utilized a motif set enrichment analysis (MSEA), from which we identified groups of stimulatory and inhibitory SRE motifs. We experimentally validated several strong SREs in SMN1/2 and MAPT minigene settings. Our results provide a valuable resource for understanding how short RNA sequences regulate splicing. Many novel SREs can be explored further to elucidate their mechanism of action.


Cell ◽  
2021 ◽  
Author(s):  
Yihan Wan ◽  
Dimitrios G. Anastasakis ◽  
Joseph Rodriguez ◽  
Murali Palangat ◽  
Prabhakar Gudla ◽  
...  

Author(s):  
Xiaohua Jin ◽  
Yousheng Yan ◽  
Chuan Zhang ◽  
Ya Tai ◽  
Lisha An ◽  
...  

Phenylketonuria (PKU) is caused by phenylalanine hydroxylase (PAH) gene variants. Previously, 94.21% of variants were identified using Sanger sequencing and multiplex ligation-dependent probe amplification. To investigate the remaining variants, whole-genome sequencing (WGS) was performed in four patients with PKU with unknown genotype to identify deep intronic or structural variants. Three novel heterozygous variants (c.706+368T>C; c.1065+241C>A; and c.1199+502A>T) were identified in a deep PAH gene intron. The c.1199+502A>T variant was detected in 60% (6/10) PKU patients. In silico prediction showed that the three deep variants may impact splice site selection and result in inclusion of a pseudo-exon. The c.1199+502A>T PAH minigene and reverse transcription PCR of blood RNA in a patient with PKU and compound heterozygous variants (c.1199+502A>T/ c.1199G>A) confirmed that the c.1199+502A>T variant creates a novel branch point and leads to the inclusion of a 25 bp in PAH mRNA (r.1199_2000ins1199+538_1199+562). Furthermore, the c.1199G>A mutation leads to the retention of an additional 17 nt in the PAH mRNA transcript (r.1199_2000ins1199+1_1199+17). These results expand the PAH genotypic spectrum and highlight that deep intronic analysis of PAH can improve genetic diagnosis in undiagnostic patients.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2647
Author(s):  
Namjeong Choi ◽  
Yongchao Liu ◽  
Jagyeong Oh ◽  
Jiyeon Ha ◽  
Xuexiu Zheng ◽  
...  

Splicing factor 3b subunit 1 (SF3B1) is an essential protein in spliceosomes and mutated frequently in many cancers. While roles of SF3B1 in single intron splicing and roles of its cancer-linked mutant in aberrant splicing have been identified to some extent, regulatory functions of wild-type SF3B1 in alternative splicing (AS) are not well-understood yet. Here, we applied RNA sequencing (RNA-seq) to analyze genome-wide AS in SF3B1 knockdown (KD) cells and to identify a large number of skipped exons (SEs), with a considerable number of alternative 5′ splice-site selection, alternative 3′ splice-site selection, mutually exclusive exons (MXE), and retention of introns (RI). Among altered SEs by SF3B1 KD, survival motor neuron 2 (SMN2) pre-mRNA exon 7 splicing was a regulatory target of SF3B1. RT-PCR analysis of SMN exon 7 splicing in SF3B1 KD or overexpressed HCT116, SH-SY5Y, HEK293T, and spinal muscular atrophy (SMA) patient cells validated the results. A deletion mutation demonstrated that the U2 snRNP auxiliary factor 65 kDa (U2AF65) interaction domain of SF3B1 was required for its function in SMN exon 7 splicing. In addition, mutations to lower the score of the polypyrimidine tract (PPT) of exon 7, resulting in lower affinity for U2AF65, were not able to support SF3B1 function, suggesting the importance of U2AF65 in SF3B1 function. Furthermore, the PPT of exon 7 with higher affinity to U2AF65 than exon 8 showed significantly stronger interactions with SF3B1. Collectively, our results revealed SF3B1 function in SMN alternative splicing.


2020 ◽  
Author(s):  
Kinneret Shefer ◽  
Ayub Boulos ◽  
Valer Gotea ◽  
Yair Ben Chaim ◽  
Joseph Sperling ◽  
...  

AbstractLatent 5’ splice sites are highly abundant in human introns, yet, are apparently not normally used. Splicing at most of these sites would incorporate in-frame stop codons generating nonsense mRNAs. Importantly, under stress and in cancer, splicing at latent sites is activated generating nonsense mRNAs from thousands of genes. Previous studies point to an unresolved RNA quality control mechanism that suppresses latent splicing independently of NMD. They further demonstrated a pivotal role for initiator-tRNA in this mechanism, through its interaction with the AUG codon, independent of its role in protein translation. To further elucidate this mechanism, here we searched for nuclear proteins directly bound to initiator-tRNA in the nucleus. We identified nucleolin (NCL), a multifunctional, abundant, and conserved protein, as a novel regulator of splice site selection. Starting with UV crosslinking, we show that NCL is directly and specifically interacting with initiator-tRNA in the nucleus, but not in the cytoplasm. In support of NCL involvement in this mechanism, we show activation of latent splicing in hundreds of transcripts upon NCL knockdown, disrupting gene transcripts involved in several important cellular pathways and cell metabolism functions (e.g. transcription factors, oncogenes, kinases, splicing factors, translation factors, and genes affecting cell motility, proliferation, and cellular trafficking). We thus propose NCL, a component of the endogenous spliceosome, through its direct interaction with initiator-tRNA and its effect on latent splicing as the first documented protein of a nuclear quality control mechanism that regulates splice site selection to protect cells from latent splicing that would generate defective mRNAs.


Sign in / Sign up

Export Citation Format

Share Document