intron splicing
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 31)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Anke Augspach ◽  
Kyle Drake ◽  
Luca Roma ◽  
Ellen Qian ◽  
Se Ri Lee ◽  
...  

Here we explored the role of minor spliceosome (MiS) function and minor intron-containing gene (MIG) expression in prostate cancer (PCa). We show MIGs are enriched as direct interactors of cancer-causing genes and their expression discriminates PCa progression. Increased expression of MiS U6atac snRNA, including others, and 6x more efficient minor intron splicing was observed in castration-resistant PCa (CRPC) versus primary PCa. Notably, androgen receptor signalling influenced MiS activity. Inhibition of MiS through siU6atac in PCa caused minor intron mis-splicing and aberrant expression of MIG transcripts and encoded proteins, which enriched for MAPK activity, DNA repair and cell cycle. Single cell-RNAseq confirmed cell cycle defects and lineage dependency on the MiS from primary to CRPC and neuroendocrine PCa. siU6atac was ~50% more efficient in lowering tumor burden of CRPC cells and organoids versus current state-of-the-art combination therapy. In all, MiS is a strong therapeutic target for lethal PCa and potentially other cancers.


2021 ◽  
Author(s):  
Pablo Montañés-Agudo ◽  
Simona Casini ◽  
Simona Aufiero ◽  
Auriane C. Ernault ◽  
Ingeborg van der Made ◽  
...  

Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated sodium and voltage-gated calcium channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking-down the essential minor spliceosome component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2. Functional consequences were studied through path-clamp analysis, and revealed reduced sodium and L-type calcium currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure.


Development ◽  
2021 ◽  
Author(s):  
Alisa K. White ◽  
Marybeth Baumgartner ◽  
Madisen F. Lee ◽  
Kyle D. Drake ◽  
Gabriela S. Aquino ◽  
...  

Minor spliceosome inhibition due to mutations in RNU4ATAC are linked to primary microcephaly. Ablation of Rnu11, a minor spliceosome snRNA, inhibits the minor spliceosome in the developing mouse pallium, causing microcephaly. There, cell cycle defects and p53-mediated apoptosis in response to DNA damage resulted in loss of radial glial cells (RGCs), underpinning microcephaly. Here, we ablated Trp53 to block cell death in the Rnu11 cKO mice. We report that Trp53 ablation failed to prevent microcephaly in these double knockout (dKO) mice. We show that the transcriptome of the dKO pallium was closer to the control compared to the Rnu11 cKO. We find aberrant minor intron splicing in MIGs involved in cell cycle regulation, resulting in more severely impaired mitotic progression and cell cycle lengthening of RGCs in the dKO that was detected earlier than the Rnu11 cKO. Furthermore, we discover a potential role of p53 in causing DNA damage in the developing pallium, as detection of γH2aX+ was delayed in the dKO. Thus, we postulate that microcephaly in minor spliceosome-related diseases is primarily caused by cell cycle defects.


2021 ◽  
Vol 22 (18) ◽  
pp. 9842
Author(s):  
Zheng-Shan He ◽  
Andan Zhu ◽  
Jun-Bo Yang ◽  
Weishu Fan ◽  
De-Zhu Li

Posttranscriptional modifications, including intron splicing and RNA editing, are common processes during regulation of gene expression in plant organelle genomes. However, the intermediate products of intron-splicing, and the interplay between intron-splicing and RNA-editing were not well studied. Most organelle transcriptome analyses were based on the Illumina short reads which were unable to capture the full spectrum of transcript intermediates within an organelle. To fully investigate the intermediates during intron splicing and the underlying relationships with RNA editing, we used PacBio DNA-seq and Iso-seq, together with Illumina short reads genome and transcriptome sequencing data to assemble the chloroplast and mitochondrial genomes of Nymphaea ‘Joey Tomocik’ and analyze their posttranscriptional features. With the direct evidence from Iso-seq, multiple intermediates partially or fully intron-spliced were observed, and we also found that both cis- and trans-splicing introns were spliced randomly. Moreover, by using rRNA-depleted and non-Oligo(dT)-enrichment strand-specific RNA-seq data and combining direct SNP-calling and transcript-mapping methods, we identified 98 and 865 RNA-editing sites in the plastome and mitogenome of N. ‘Joey Tomocik’, respectively. The target codon preference, the tendency of increasing protein hydrophobicity, and the bias distribution of editing sites are similar in both organelles, suggesting their common evolutionary origin and shared editing machinery. The distribution of RNA editing sites also implies that the RNA editing sites in the intron and exon regions may splice synchronously, except those exonic sites adjacent to intron which could only be edited after being intron-spliced. Our study provides solid evidence for the multiple intermediates co-existing during intron-splicing and their interplay with RNA editing in organelle genomes of a basal angiosperm.


2021 ◽  
Author(s):  
Stefano Gnan ◽  
Melody Matelot ◽  
Marion Weiman ◽  
Olivier Arnaiz ◽  
Frederic Guerin ◽  
...  

Eukaryotic genes are interrupted by introns that must be accurately spliced from mRNA precursors. With an average length of 25 nt, the >90,000 introns of Paramecium tetraurelia stand among the shortest introns reported in eukaryotes. The mechanisms specifying the correct recognition of these tiny introns remain poorly understood. Splicing can occur co-transcriptionally and it has been proposed that chromatin structure might influence splice site recognition. To investigate the roles of nucleosome positioning in intron recognition, we determined the nucleosome occupancy along the P. tetraurelia genome. We showed that P. tetraurelia displays a regular nucleosome array with a nucleosome repeat length of ~151 bp, amongst the smallest periodicities reported. Our analysis revealed that introns are frequently associated with inter-nucleosomal DNA, pointing to an evolutionary constraint to locate introns at the AT-rich nucleosome edge sequences. Using accurate splicing efficiency data from cells depleted for the nonsense-mediated decay effectors, we showed that introns located at the edge of nucleosomes display higher splicing efficiency than those at the centre. However, multiple regression analysis indicated that the GC content, rather than nucleosome positioning, directly contributes to intron splicing efficiency. Our data reveal a complex link between GC content, nucleosome positioning and intron evolution in Paramecium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shi-Kai Cao ◽  
Rui Liu ◽  
Aqib Sayyed ◽  
Feng Sun ◽  
Ruolin Song ◽  
...  

In flowering plants, mitochondrial genes contain approximately 20–26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown. Elucidation of the mechanism necessitates a complete understanding of the splicing factors. Here, we report the identification of a regulator of chromosome condensation 1 (RCC1)-domain protein DEK47 that is required for mitochondrial intron splicing and seed development in maize. Loss of function in Dek47 severely arrests embryo and endosperm development, resulting in a defective kernel (dek) phenotype. DEK47 harbors seven RCC1 domains and is targeted to mitochondria. Null mutation of DEK47 causes a deficiency in the splicing of all four nad2 introns, abolishing the production of mature nad2 transcript and resulting in the disassembly and severely reduced activity of mitochondrial complex I. In response, the expression of the alternative oxidase AOX2 is sharply increased in dek47. These results indicate that Dek47 is required for the splicing of all the nad2 introns in mitochondria, and essential for complex I assembly, and kernel development in maize.


2021 ◽  
Author(s):  
Alisa K. White ◽  
Marybeth Baumgartner ◽  
Madisen F. Lee ◽  
Kyle D. Drake ◽  
Gabriela S. Aquino ◽  
...  

AbstractMutations in minor spliceosome component RNU4ATAC, a small nuclear RNA (snRNA), are linked to primary microcephaly. We have reported that in the conditional knockout (cKO) mice for Rnu11, another minor spliceosome snRNA, minor intron splicing defect in minor intron-containing genes (MIGs) regulating cell cycle resulted in cell cycle defects, with a concomitant increase in γH2aX+ cells and p53-mediated apoptosis. Trp53 ablation in the Rnu11 cKO mice did not prevent microcephaly. However, RNAseq analysis of the double knockout (dKO) pallium reflected transcriptomic shift towards the control from the Rnu11 cKO. We found elevated minor intron retention and alternative splicing across minor introns in the dKO. Disruption of these MIGs resulted in cell cycle defects that were more severe and detected earlier in the dKO, but with delayed detection of γH2aX+ DNA damage. Thus, p53 might also play a role in causing DNA damage in the developing pallium. In all, our findings further refine our understanding of the role of the minor spliceosome in cortical development and identify MIGs underpinning microcephaly in minor spliceosome-related diseases.


2020 ◽  
Author(s):  
Leila Feiz ◽  
Yukari Asakura ◽  
Linyong Mao ◽  
Susan R. Strickler ◽  
Zhangjun Fei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document