EVALUATING RIVER RESPONSE TO CLIMATE CHANGE USING CHANNEL-BAR RECONSTRUCTIONS IN THE WILLWOOD FORMATION, PALEOCENE-EOCENE, NORTHWESTERN BIGHORN BASIN, WYOMING, USA

2016 ◽  
Author(s):  
Evan Greenberg ◽  
◽  
Elizabeth Hajek ◽  
Ellen P. Chamberlin
2015 ◽  
Vol 89 (4) ◽  
pp. 665-694 ◽  
Author(s):  
Rachel H. Dunn ◽  
Kenneth D. Rose

AbstractSpecies-level diversity and evolution of Palaeosinopa from the Willwood Formation of the Bighorn Basin is reassessed based on substantial new material from the Bighorn, Powder River, and Wind River basins. We recognize three species of Palaeosinopa in the Willwood Formation of the Bighorn Basin: P. lutreola, P. incerta, and P. veterrima. The late Wasatchian species P. didelphoides is not present in the Bighorn Basin. The Willwood species can be differentiated based only on size. P. veterrima is the most common and wide-ranging species and is the most variable in size and morphology: the stratigraphically lowest individuals are smaller, with narrower, more crestiform lower molars; whereas the highest are larger, with wider, more bunodont teeth. Although it could be argued that these represent distinct species, we demonstrate that this morphological evolution occurred as the gradual and mosaic accumulation of features, suggesting in situ anagenetic evolution. The two smaller species are present only low in the section (biochrons Wa0–Wa4) and show no discernable evolution in size or morphology. A new skeleton of Palaeosinopa veterrima from the Willwood Formation is described, and other new postcrania are reported. The skeleton is the oldest associated skeleton of Palaeosinopa known, yet it is remarkably similar to those of younger, more derived pantolestids, the primary disparities being minor differences in proportions of the innominate, femur, and tibia, and co-ossification of the distal tibia and fibula. Either P. incerta or P. lutreola was likely the ancestral population that gave rise to the other Wasatchian Palaeosinopa. Alternatively, P. veterrima may have migrated into the Bighorn Basin from the Powder River Basin.


Geology ◽  
2008 ◽  
Vol 36 (7) ◽  
pp. 531 ◽  
Author(s):  
Hayfaa Abdul Aziz ◽  
Frits J. Hilgen ◽  
Gerson M. van Luijk ◽  
Appy Sluijs ◽  
Mary J. Kraus ◽  
...  

2002 ◽  
Vol 58 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Mark E. Lyford ◽  
Julio L. Betancourt ◽  
Stephen T. Jackson

AbstractRecords of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m), currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal (Juniperus communis, J. horizontalis) and montane species (J. scopulorum) were replaced by a Great Basin species (J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains.


2015 ◽  
Vol 35 (2) ◽  
pp. e905481 ◽  
Author(s):  
Jason R. Bourque ◽  
J. Howard Hutchison ◽  
Patricia A. Holroyd ◽  
Jonathan I. Bloch

Paleobiology ◽  
2009 ◽  
Vol 35 (1) ◽  
pp. 13-31 ◽  
Author(s):  
Amy E. Chew

The mammal fauna of the Willwood Formation, central Bighorn Basin, Wyoming, is ideal for paleoecological analysis because it is extensive, well studied, and continuously distributed over sediments representing the first 3 Myr of the early Eocene. The geology of the Bighorn Basin is also well known, providing a precise temporal framework and climatic context for the Willwood mammals. Previous analysis identified three “biohorizons,” based on simple counts of the first and last appearances of species. This study uses species diversity and appearance rates calculated from more extensive collections to approximate the ecological dynamic of the ancient fauna and assess whether the biohorizons were significant turnover events related to recently described climatic variation. Diversity and appearance data collected for this project are extensively corrected for uneven sampling, which varies by two orders of magnitude. Observed, standardized appearance and diversity estimates are subsequently compared with predicted background frequencies to identify significant variation. Important coincident shifts in the biotic parameters demonstrate that ecological change was concentrated in two discrete intervals ≤300 Kyr each that correspond with two of the original biohorizons. The intervals coincide with the onset and reversal of an episode of climate cooling identified directly from Bighorn Basin floras and sediments. Ecological changes inferred from the diversity and turnover patterns at and following the two biohorizons suggest short- and long-term faunal response to shifts in mean annual temperature on the order of 5–8°C.


Sign in / Sign up

Export Citation Format

Share Document