Holocene Vegetation and Climate History of the Northern Bighorn Basin, Southern Montana

2002 ◽  
Vol 58 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Mark E. Lyford ◽  
Julio L. Betancourt ◽  
Stephen T. Jackson

AbstractRecords of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m), currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal (Juniperus communis, J. horizontalis) and montane species (J. scopulorum) were replaced by a Great Basin species (J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains.

2020 ◽  
Author(s):  
Özlem Sert

&lt;p&gt;Humid weather conditions of the sixteenth century enabled the introduction of aqua crops to Southeastern European landscapes. The Ottoman government employed a group of experts for the cultivation of rice to implement and rehabilitate rice production. Rice plantations, as an anthropogenic intrusion in the region between Tigris to the Danube, had a fundamental social and environmental impact. Organization of human resources on a large scale; land reclamations, deforestation, and kilometres-long irrigation work changed the landscape, produced seasonal miasma and aquatic pests. Ottoman rice plantations transformed the Southeastern European socio-ecological landscapes in early modern times. Historical data about the Ottoman rice plantations open new insights for improving our knowledge about climate history, the history of riverbeds and the history of malaria in this landscape. The study presents a monography of the plantations with historical drawings and maps, showing the farms on river beds, delineates the responsiveness of the rice harvest to precipitation and temperature changes and maps the triggered aquatic pests due to climate change and deforestation. The presentation aims at opening a historical perspective to today's questions on climate change, hydrology and vector caused diseases.&lt;/p&gt;


2016 ◽  
Vol 1 (1) ◽  
pp. 27-58 ◽  
Author(s):  
Timothy Brook

I have written this essay to address what I regard as a pressing need among China historians for a stronger model of climate change and its impact on state and society during the imperial period. We have all become acutely conscious of climate change as an element of our own world, yet few of us have considered the impact of climate, particularly climate change, on our subjects of study. China is not without its climate historians, and yet the collective research is still in an early phase. Aware of this problem for some time, I published preliminary findings in the form of a chronological profile of climate anomalies through the Yuan and Ming dynasties in 2010. Burying my findings in a textbook has meant that the periodization offered there has captured the interest of some students but gone largely ignored by scholars in the field. Since then I have done further research and have revised some of those findings, and would now like to offer a fuller presentation of methods and findings.


2013 ◽  
Vol 293 ◽  
pp. 157-169 ◽  
Author(s):  
Konstantinos Panagiotopoulos ◽  
Anne Aufgebauer ◽  
Frank Schäbitz ◽  
Bernd Wagner

1985 ◽  
Vol 23 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Marjorie Green Winkler

Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.


Boreas ◽  
2008 ◽  
Vol 27 (2) ◽  
pp. 115-126 ◽  
Author(s):  
DOROTHY PETEET ◽  
ANDREI ANDREEV ◽  
WILLIAM BARDEEN ◽  
FRANCESCA MISTRETTA

Sign in / Sign up

Export Citation Format

Share Document