Diversity and climate change in the middle-late Wasatchian (early Eocene) Willwood Formation, central Bighorn Basin, Wyoming

2013 ◽  
Vol 369 ◽  
pp. 67-78 ◽  
Author(s):  
Amy E. Chew ◽  
Kathryn B. Oheim
Paleobiology ◽  
2009 ◽  
Vol 35 (1) ◽  
pp. 13-31 ◽  
Author(s):  
Amy E. Chew

The mammal fauna of the Willwood Formation, central Bighorn Basin, Wyoming, is ideal for paleoecological analysis because it is extensive, well studied, and continuously distributed over sediments representing the first 3 Myr of the early Eocene. The geology of the Bighorn Basin is also well known, providing a precise temporal framework and climatic context for the Willwood mammals. Previous analysis identified three “biohorizons,” based on simple counts of the first and last appearances of species. This study uses species diversity and appearance rates calculated from more extensive collections to approximate the ecological dynamic of the ancient fauna and assess whether the biohorizons were significant turnover events related to recently described climatic variation. Diversity and appearance data collected for this project are extensively corrected for uneven sampling, which varies by two orders of magnitude. Observed, standardized appearance and diversity estimates are subsequently compared with predicted background frequencies to identify significant variation. Important coincident shifts in the biotic parameters demonstrate that ecological change was concentrated in two discrete intervals ≤300 Kyr each that correspond with two of the original biohorizons. The intervals coincide with the onset and reversal of an episode of climate cooling identified directly from Bighorn Basin floras and sediments. Ecological changes inferred from the diversity and turnover patterns at and following the two biohorizons suggest short- and long-term faunal response to shifts in mean annual temperature on the order of 5–8°C.


2021 ◽  
Author(s):  
Youwei WANG ◽  
Timothy Baars ◽  
Hiranya Sahoo ◽  
Joep Storms ◽  
Allard Martinius ◽  
...  

The lower Eocene Willwood Formation of the intermontane Bighorn Basin, Wyoming, USA, is an alluvial red bed succession with a sand content of ca. 20%-25%. The formation has been studied intensively for paleontology, paleoclimate, and sedimentary reconstruction. However, alluvial sandstone bodies and their corresponding river styles remain little characterized and documented. Here, efforts are made to study the characteristics and river styles of sandstone bodies through ca. 300 m of alluvial stratigraphy in the McCullough Peaks outcrop area based on the field data and a georeferenced 3-D photogrammetric model. Four channel facies associations are recognized, and they are ascribed to four river planform styles: distributary channel, massive trunk-shaped channel, braided channel, and sinuous channel, with the latter two styles being the more abundant. The channel sandstone bodies that show the character of sinuous rivers and those of braided rivers differ significantly in average thickness (6.1 m versus 9.0 m) and insignificantly in average width (on average 231 m) and paleoflow directions (on average N003). Braided-character dominated and sinuous-character dominated river styles are seen to alternate in the outcrop, while they show no spatial dependency in the 10 km2 study area. Bighorn Basin margins varied in the early Eocene, with differing tectonic, geological, and topographic characteristics. The observed mixture of river styles may be attributed to differential influences of axial and transverse river systems and/or climate change that controls water discharge and sediment load. An early Eocene geomorphologic reconstruction is constructed summarizing these new and earlier results.


2015 ◽  
Vol 11 (2) ◽  
pp. 1371-1405
Author(s):  
A. E. Chew

Abstract. Scientists are increasingly turning to deep-time fossil records to decipher the long-term consequences of climate change in the race to preserve modern biotas from anthropogenically driven global warming. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series hyperthermals is known from the early Eocene (∼56–54 million years ago), including the Paleocene-Eocene Thermal Maximum (PETM) and two subsequent hyperthermals, Eocene Thermal Maximum 2 (ETM2) and H2. The later hyperthermals occurred following the onset of warming at the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are unknown. Their geochemical signatures have been located in the northern part of the Bighorn Basin, WY, USA, and their levels can be extrapolated to an extraordinarily dense, well-studied terrestrial mammal fossil record in the south-central part of the basin. High-resolution, multi-parameter paleoecological analysis reveals significant peaks in species diversity and turnover and changes in abundance and relative body size at the levels of ETM2 and H2 in the south-central Bighorn Basin record. In contrast with the PETM, faunal change at the later hyperthermals is less extreme, does not include immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. Faunal response at ETM2 and H2 is distinctive in its high proportion of species losses potentially related to heightened species vulnerability in response to the changes already underway at the beginning of the EECO. Faunal response at ETM2 and H2 is also distinctive in high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation. These results suggest that rapid ecological changes, increased heterogeneity in species incidence, and heightened species vulnerability and loss may be expected across most of North America in the near future in response to anthropogenically-driven climate change.


2008 ◽  
Vol 82 (6) ◽  
pp. 1074-1113 ◽  
Author(s):  
Mary T. Silcox ◽  
Kenneth D. Rose ◽  
Thomas M. Bown

We present a critical review of the alpha taxonomy and evolution of Eocene North American paromomyid primates, based on analysis of more than 570 stratigraphically controlled dental and gnathic specimens from the early Eocene of the southern Bighorn Basin, Wyoming (Wasatchian, Willwood Formation). In addition to documenting numerous previously unpublished specimens of known taxa (including deciduous teeth), we also describe a new species, Phenacolemur willwoodensis n. sp., from the upper part of the Willwood Formation (Wa 5 and 6). The new species is intermediate in size between Phenacolemur simonsi and Phenacolemur citatus and has both primitive features (e.g., retention of m2–3 paraconids, relatively long molar trigonids) and derived traits (e.g., relatively reduced paraconid on m1 and no p4 paracristid, unlike Paromomys). Overall patterns of dental evolution in southern Bighorn Basin paromomyids provide some support for previously hypothesized periods of faunal change (Biohorizons). In particular, Phenacolemur praecox evolves into the similarly sized but morphologically distinct Phenacolemur fortior at Biohorizon A, and P. fortior is replaced by P. citatus just below Biohorizon B. Two taxa previously believed to have become extinct at Biohorizon A (Ignacius graybullianus, P. simonsi) are shown to have persisted about a million years longer than previously thought. The Bighorn Basin paromomyids are of general interest in comprising a very dense sample that allows for the study of patterns of evolution against the backdrop of well-understood patterns of change in other mammalian lineages, and in climatic variables.


Sign in / Sign up

Export Citation Format

Share Document