HOW THE MEDIAN S-BAND CIRCULAR POLARIZATION RATIO OF KILOMETER-SCALE CRATERS EVOLVES WITH TIME ON THE LUNAR MARIA

2018 ◽  
Author(s):  
Caleb I. Fassett ◽  
◽  
Isabel R. King ◽  
Cole A. Nypaver ◽  
Bradley J. Thomson
2021 ◽  
Vol 13 (14) ◽  
pp. 2652
Author(s):  
Wangfei Zhang ◽  
Yongxin Zhang ◽  
Yue Yang ◽  
Erxue Chen

Accurate and timely knowledge of crop phenology assists in planning and/or triggering appropriate farming activities. The multiple Polarimetric Synthetic Aperture Radar (PolSAR) technique shows great potential in crop phenology retrieval for its characterizations, such as short revisit time, all-weather monitoring and sensitivity to vegetation structure. This study aims to explore the potential of averaged Stokes-related parameters derived from multiple PolSAR data in oilseed rape phenology identification. In this study, the averaged Stokes-related parameters were first computed by two different wave polarimetric states. Then, the two groups of averaged Stokes-related parameters were generated and applied for analyzing averaged Stokes-related parameter sensitivity to oilseed rape phenology changes. At last, decision tree (DT) algorithms trained using 60% of the data were used for oilseed rape phenological stage classification. Four Stokes parameters (g0, g1, g2 and g3) and eight sub parameters (degree of polarization m, entropy H, ellipticity angle χ, orientation angle φ, degree of linear polarization Dolp, degree of circular polarization Docp, linear polarization ratio Lpr and circular polarization ratio Cpr) were extracted from a multi-temporal RADARSAT-2 dataset acquired during the whole oilseed rape growth cycle in 2013. Their sensitivities to oilseed rape phenology were analyzed versus five main rape phenology stages. In two groups (two different wave polarimetric states) of this study, g0, g1, g2, g3, m, H, Dolp and Lpr showed high sensitivity to oilseed rape growth stages while χ, φ, Docp and Cpr showed good performance for phenology classification in previous studies, which were quite noisy during the whole oilseed rape growth circle and showed unobvious sensitivity to the crop’s phenology change. The DT algorithms performed well in oilseed rape phenological stage identification. The results were verified at the parcel level with left 40% of the point dataset. Five phenology intervals of oilseed rape were identified with no more than three parameters by simple but robust decision tree algorithm groups. The identified phenology stages agree well with the ground measurements; the overall identification accuracies were 71.18% and 79.71%, respectively. For each growth stage, the best performance occurred at stage S1 with the accuracy of 95.65% for Group 1 and 94.23% for Group 2, and the worst performance occurred at stage S3 and S5 with the values around 60%. Most of the classification errors may resulted from the indistinguishability of S3 and S5 using Stokes-related parameters.


Author(s):  
Kassandra S. Wells ◽  
Donald B. Campbell ◽  
Bruce A. Campbell ◽  
Lynn M. Carter

2020 ◽  
Author(s):  
Lauren Jozwiak ◽  
G. Wes Patterson ◽  

<p>The possibility that water ice could be present in lunar polar craters has long been postulated.  More recently, measurements from instruments on a number of spacecraft have all pointed to the presence of water at the lunar poles; although whether that water exists as surficial frost or as extensive, competent ice deposits remains strongly debated. Water ice can exhibit a strong response at radar wavelengths in the form of a Coherent Backscatter Opposition Effect (CBOE) and the circular polarization ratio (CPR) of the returned data can be a useful indicator of such a response—i.e., measured CPRs for icy materials typically exceed unity. Mini-RF is currently operating as part of the Lunar Reconnaissance Orbiter (LRO) Cornerstone Extended Mission to address driving questions related to the form/abundance of water on the Moon and its vertical distribution. Using a combination of monostatic and bistatic observations of the lunar poles, we investigate the radar response of lunar polar craters. Continued analysis of monostatic radar data suggest little evidence for extensive ice signatures; however, initial analyses of bistatic data suggest that an ice signature may be observed within the crater Cabeus. These seemingly contradictory results could be related to the nature of the depth or distribution of ice. We will explore these possibilities, and the implications for lunar ISRU.  </p>


Sign in / Sign up

Export Citation Format

Share Document