On the exponential rate of convergence in the Birkhoff ergodic theorem

2014 ◽  
Vol 95 (3-4) ◽  
pp. 573-576 ◽  
Author(s):  
I. V. Podvigin
1976 ◽  
Vol 13 (04) ◽  
pp. 733-740
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn (x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G ∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1976 ◽  
Vol 13 (4) ◽  
pp. 733-740 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn(x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1975 ◽  
Vol 12 (02) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn (x) — G(x) is asymptotically equal to c.H(x)n −3/2 γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


Bernoulli ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 1844-1854 ◽  
Author(s):  
Anna De Masi ◽  
Errico Presutti ◽  
Dimitrios Tsagkarogiannis ◽  
Maria Eulalia Vares

Sign in / Sign up

Export Citation Format

Share Document