Structure of the solvation spheres of ions in aqueous solutions of LuCl3 according to X-ray diffraction data

2015 ◽  
Vol 89 (4) ◽  
pp. 630-633 ◽  
Author(s):  
P. R. Smirnov ◽  
O. V. Grechin ◽  
I. L. Kritskii
Author(s):  
Pavel R. Smirnov ◽  
Oleg V. Grechin ◽  
Elena A. Voevodina

Comparatively large amount of works has been devoted to the investigation of the nearest environment of cesium ions in aqueous solutions. But up to date there are no precise quantitative parameters of it. Information about influence of concentration on cesium salts solutions structure is also absent. In order to get the coordination number of Cs+ ion and its dependence on the amount of dissolved salt the set of aqueous solutions of cesium iodide have been studied by X-ray diffraction method in wide concentration range under ambient conditions. Radial distribution functions (RDFs) of the solutions investigated have been calculated from experimental intensity curves of X-ray scattering. Interpretation of experimental peaks on RDFs has been made. On the basis of experimental results and literature information some physically reasonable models of solution have been constructed. Theoretical RDFs have been calculated for every model. Then an optimization procedure has also been made. On the ground of the best fitness between experimental and theoretical RDFs the optimal models for every solution have been found. All quantitative parameters have been tabulated and analyzed. Hydration numbers of Cs+ and I- increase with dilution, reaching in the solution of molar ratio 1:80 values 6.3 and 4.1, respectively. Interparticle distances of Cs+–ОН2 and I- –ОН2 are equal approximately to 0.312 and 0.359 nm. The ions do not form the second coordination shells. It has been determined that contact ion pairs Cs+–I- exist in whole concentration range investigated.Forcitation:Smirnov P.R., Grechin O.V., Voevodina E.A. Structure of nearest environment of ions in aqueous cesium iodide solutions from X-ray diffraction data. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 7. P. 21-26.


1991 ◽  
Vol 46 (12) ◽  
pp. 1083-1094 ◽  
Author(s):  
Y. Tamura ◽  
H. Ohtaki ◽  
I. Okada

Abstract Molecular dynamics simulations of concentrated aqueous Csl solutions have been performed for Csl: H2O = 1:20 (2.78 molal) at 298 K and 341 K and 1:10 (5.56 molal) at 349 K. Effects of temperature and concentration on the structures of the hydrated ions, the ion pairs, and ionic aggregates are discussed by comparing the results with X-ray diffraction data obtained under similar conditions [1]


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


1984 ◽  
Vol 140 (2-3) ◽  
pp. 202-205 ◽  
Author(s):  
Walter Morisset ◽  
Werner Wehrmeyer ◽  
Tilman Schirmer ◽  
Wolfram Bode

Sign in / Sign up

Export Citation Format

Share Document