POD-analysis of the near field of a turbulent circular jet when mixing gases of different densities

2021 ◽  
Vol 28 (1) ◽  
pp. 55-64
Author(s):  
V. A. Ivashchenko ◽  
E. V. Palkin ◽  
V. O. Ryzhenkov ◽  
R. I. Mullyadzhanov
Keyword(s):  
2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kun Zhao ◽  
Patrick N. Okolo ◽  
Yong Wang ◽  
John Kennedy ◽  
Gareth J. Bennett

This study reports an experimental investigation of two planar jets in a crossflow in a tandem arrangement. Tests were conducted in an open-jet wind tunnel facility using two-dimensional (2D)-particle imaging velocimetry (PIV) measurement. Using the terminology in the dual jets in a quiescent ambient, the mean flow field of the crossflow arrangement was divided into a converging region, a merging region, and a combined region. An approach to determining the range of these three regions was proposed based on the mean characteristics of horizontal velocity profiles of the flow field, validated by the experimental data. The momentum-dominated near field (MDNF) for the rear jet in the dual-jet configuration was recognized using the horizontal offset of mean jet trajectory, which accordingly gives a quantitative definition of the MDNF range. Discussions were made on the effects of different parameters on the three regions and MDNF. Finally, snapshot proper orthogonal decomposition (POD) analysis was conducted, characterizing the coherent structures of the flow field, particularly the large-scale vortices. It was observed that the large-scale vortices mainly occur in the shear layers of the jets and their occurrence is affected by the parameters of the jets. In addition, compared with the single-jet configuration, the introduction of the front jet was found to contribute to the occurrence and development of the large-scale vortices.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Author(s):  
Daqing Cui ◽  
Ylva Ranebo ◽  
Jeanett Low ◽  
Vincenzo Rondinella ◽  
Jinshan Pan ◽  
...  
Keyword(s):  

Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

2011 ◽  
Vol E94-B (9) ◽  
pp. 2646-2649
Author(s):  
Bum-Soo KWON ◽  
Tae-Jin JUNG ◽  
Kyun-Kyung LEE

2013 ◽  
Vol E96.B (5) ◽  
pp. 1141-1148 ◽  
Author(s):  
Dalin ZHANG ◽  
Toshikazu HORI ◽  
Mitoshi FUJIMOTO

Sign in / Sign up

Export Citation Format

Share Document