An Experimental Characterization of the Interaction Between Two Tandem Planar Jets in a Crossflow

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kun Zhao ◽  
Patrick N. Okolo ◽  
Yong Wang ◽  
John Kennedy ◽  
Gareth J. Bennett

This study reports an experimental investigation of two planar jets in a crossflow in a tandem arrangement. Tests were conducted in an open-jet wind tunnel facility using two-dimensional (2D)-particle imaging velocimetry (PIV) measurement. Using the terminology in the dual jets in a quiescent ambient, the mean flow field of the crossflow arrangement was divided into a converging region, a merging region, and a combined region. An approach to determining the range of these three regions was proposed based on the mean characteristics of horizontal velocity profiles of the flow field, validated by the experimental data. The momentum-dominated near field (MDNF) for the rear jet in the dual-jet configuration was recognized using the horizontal offset of mean jet trajectory, which accordingly gives a quantitative definition of the MDNF range. Discussions were made on the effects of different parameters on the three regions and MDNF. Finally, snapshot proper orthogonal decomposition (POD) analysis was conducted, characterizing the coherent structures of the flow field, particularly the large-scale vortices. It was observed that the large-scale vortices mainly occur in the shear layers of the jets and their occurrence is affected by the parameters of the jets. In addition, compared with the single-jet configuration, the introduction of the front jet was found to contribute to the occurrence and development of the large-scale vortices.

2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 813 ◽  
Author(s):  
Keyi Nan ◽  
Zhongyan Hu ◽  
Wei Zhao ◽  
Kaige Wang ◽  
Jintao Bai ◽  
...  

In the present work, we studied the three-dimensional (3D) mean flow field in a micro electrokinetic (μEK) turbulence based micromixer by micro particle imaging velocimetry (μPIV) with stereoscopic method. A large-scale solenoid-type 3D mean flow field has been observed. The extraordinarily fast mixing process of the μEK turbulent mixer can be primarily attributed to two steps. First, under the strong velocity fluctuations generated by μEK mechanism, the two fluids with different conductivity are highly mixed near the entrance, primarily at the low electric conductivity sides and bias to the bottom wall. Then, the well-mixed fluid in the local region convects to the rest regions of the micromixer by the large-scale solenoid-type 3D mean flow. The mechanism of the large-scale 3D mean flow could be attributed to the unbalanced electroosmotic flows (EOFs) due to the high and low electric conductivity on both the bottom and top surface.


2020 ◽  
Vol 5 (10) ◽  
pp. 1199-1203
Author(s):  
Md. Mosharrof Hossain ◽  
Muhammed Hasnain Kabir Nayeem ◽  
Dr. Md Abu Taher Ali

In this investigation experiment was carried out in 80 mm diameter swirling pipe jet, where swirl was generated by attaching wedge-shaped helixes in the pipe. All measurements were taken at Re 5.3e4. In the plain pipe jet the potential core was found to exist up to x/D=5 but in the swirling jet there was no existence of potential core. The mean velocity profiles were found to be influenced by the presence of wedge-shaped helixes in the pipe. The velocity profiles indicated the presence of sinusoidal flow field in the radial direction existed only in the near field of the jet. This flow field died out after x/D=3 and the existence of jet flow diminished after x/D=5.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2001 ◽  
Vol 124 (1) ◽  
pp. 154-165 ◽  
Author(s):  
S. R. Maddah ◽  
H. H. Bruun

This paper presents results obtained from a combined experimental and computational study of the flow field over a multi-element aerofoil with and without an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire (FHW) probes. The model configuration which spans the test section 600mm×600mm, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83 mm, respectively. The results were obtained at a chord Reynolds number of 3×105 and a free Mach number of less than 0.1. The variations in the flow field are explained with reference to three distinct flow field regimes: attached flow, intermittent separated flow, and separated flow. Initial comparative results are presented for the single main aerofoil and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg. This is followed by the results for the three-element aerofoil with emphasis on the slat performance at angles of attack α=10, 15, 20, and 25 deg. Results are discussed both for a nondeflected flap δf=0deg and a deflected flap δf=25deg. The measurements presented are combined with other related aerofoil measurements to explain the main interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and deflected flap conditions. These results are linked to numerically calculated variations in lift and drag coefficients with angle of attack and flap deflection angle.


Author(s):  
Ruquan You ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Kuan Wei

The mean flow field in a smooth rotating channel was measured by particle image velocimetry under the effect of buoyancy force. In the experiments, the Reynolds number, based on the channel hydraulic diameter (D) and the bulk mean velocity (Um), is 10000, and the rotation numbers are 0, 0.13, 0.26, 0.39, 0.52, respectively. The four channel walls are heated with Indium Tin Oxide (ITO) heater glass, making the density ratio (d.r.) about 0.1 and the maximum value of buoyancy number up to 0.27. The mean flow field was simulated on a 3D reconstruction at the position of 3.5<X/D<6.5, where X is along the mean flow direction. The effect of Coriolis force and buoyancy force on the mean flow was taken into consideration in the current work. The results show that the Coriolis force pushes the mean flow to the trailing side, making the asymmetry of the mean flow with that in the static conditions. On the leading surface, due to the effect of buoyancy force, the mean flow field changes considerably. Comparing with the case without buoyancy force, separated flow was captured by PIV on the leading side in the case with buoyancy force. More details of the flow field will be presented in this work.


Author(s):  
Huixuan Wu ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A series of high resolution planar particle image velocimetry measurements performed in a waterjet pump rotor reveal the inner structure of the tip leakage vortex (TLV) which dominates the entire flow field in the tip region. Turbulence generated by interactions among the TLV, the shear layer that develops as the backward leakage flow emerges from the tip clearance as a “wall jet”, the passage flow, and the endwall is highly inhomogeneous and anisotropic. We examine this turbulence in both RANS and LES modelling contexts. Spatially non-uniform distributions of Reynolds stress components are explained in terms of the local mean strain field and associated turbulence production. Characteristic length scales are also inferred from spectral analysis. Spatial filtering of instantaneous data enables the calculation of subgrid scale (SGS) stresses, along with the SGS energy flux (dissipation). The data show that the SGS energy flux differs from the turbulence production rate both in trends and magnitude. The latter is dominated by energy flux from the mean flow to the large scale turbulence, which is resolved in LES, whereas the former is dominated by energy flux from the mean flow to the SGS turbulence. The SGS dissipation rate is also used for calculating the static and dynamic Smagorinsky coefficients, the latter involving filtering at multiple scales; both vary substantially in the tip region, and neither is equal to values obtained in isotropic turbulence.


Sign in / Sign up

Export Citation Format

Share Document