scholarly journals Determining the orientation parameters of the ICRS/UCAC2 system using the Kharkov catalog of absolute stellar proper motions

2010 ◽  
Vol 36 (7) ◽  
pp. 506-513 ◽  
Author(s):  
V. V. Bobylev ◽  
P. N. Fedorov ◽  
A. T. Bajkova ◽  
V. S. Akhmetov
2011 ◽  
pp. 35-41 ◽  
Author(s):  
G. Damljanovic ◽  
I.S. Milic

During the last century, there were many so-called independent latitude (IL) stations with the observations which were included into data of a few international organizations (like Bureau International de l'Heure - BIH, International Polar Motion Service - IPMS) and the Earth rotation programmes for determining the Earth Orientation Parameters - EOP. Because of this, nowadays, there are numerous astrometric ground-based observations (made over many decades) of some stars included in the Hipparcos Catalogue (ESA 1997). We used these latitude data for the inverse investigations - to improve the proper motions in declination ?? of the mentioned Hipparcos stars. We determined the corrections ??? and investigated agreement of our ?? and those from the catalogues Hipparcos and new Hipparcos (van Leeuwen 2007). To do this we used the latitude variations of 7 stations (Belgrade, Blagoveschtschensk, Irkutsk, Poltava, Pulkovo, Warsaw and Mizusawa), covering different intervals in the period 1904.7 - 1992.0, obtained with 6 visual and 1 floating zenith telescopes (Mizusawa). On the other hand, with regard that about two decades have elapsed since the Hipparcos ESA mission observations (the epoch of Hipparcos catalogue is 1991.25), the error of apparent places of Hipparcos stars has increased by nearly 20 mas because of proper motion errors. Also, the mission lasted less than four years which was not enough for a sufficient accuracy of proper motions of some stars (such as double or multiple ones). Our method of calculation, and the calculated ?? for the common IL/Hipparcos stars are presented here. We constructed an IL catalogue of 1200 stars: there are 707 stars in the first part (with at least 20 years of IL observations) and 493 stars in the second one (less than 20 years). In the case of ?? of IL stars observed at some stations (Blagoveschtschensk, Irkutsk, Mizusawa, Poltava and Pulkovo) we find the formal errors less than the corresponding Hipparcos ones and for some of them (stations Blagoveschtschensk and Irkutsk) even less than the new Hipparcos ones.


1970 ◽  
Vol 7 ◽  
pp. 5-25
Author(s):  
James Newcomb

The discovery and measurement of stellar proper motions has always been associated with machines: for proper motion measurements involve four activities: observation, recording, comparison and measurement. Participation by the astronomer in these activities has step by step been replaced partically or wholly by machines. First the observation and recording functions changed from visual to photographic – with the fine guiding done by the astronomer; then the comparison by the blink microscope and the measurement by visually operated measuring machines. On a comparative time scale, the next step – automation of the comparison and measurement function – has been much money, time, and effort away from the previous steps, but as this presentation and other presentations at this conference will show, machines of varying degrees of automation and astronomer participation are now in operation.


1990 ◽  
Vol 141 ◽  
pp. 407-417
Author(s):  
A. R. Klemola

The Lick proper motion program, one of several using galaxies as a reference frame, is summarized with a statement of work accomplished for the non-Milky Way sky. The problem of identifying relatively transparent regions at low galactic latitudes is discussed, with tabular results presented for 41 windows from the literature having observable galaxies. These fields may be helpful for attaching stellar proper motions directly to the extragalactic frame.


2018 ◽  
Vol 28 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Andreas Eckart

AbstractAt the very beginning of the last millennium Ibn al-Haytham greatly contributed to the investigation of the Milky Way. Here, the only three currently known versions of his work on the location of the Milky Way are compared to each other and discussed. A comparison of the texts and an early translation into German by E. Wiedemann in 1906 reveals several differences that triggered a new critical translation of the passed down text. We give detailed comments on the work and check the validity of Ibn al-Haytham's arguments. We also discuss his work in the framework of the ‘Great Debate’ on the Milky Way that took place around 1920, more than a decade after Wiedemann's translation. We find that Ibn al-Haytham's work is certainly at the peak of the unaided-eye era of the Milky Way's discovery. Through his own argumentation and in comparison to Ptolemy's observations Ibn al-Haytham clearly identifies the Galaxy as an extraterrestrial body that is not part of the atmosphere but much further away than the Moon. With some of his statements on the stellar positions passed down by Ptolemy, Ibn al-Haytham also anticipates the concept of stellar proper motions.


1988 ◽  
Vol 133 ◽  
pp. 465-468
Author(s):  
H.-J. Tucholke

The proper motions of the galactic globular clusters 47 Tuc and NGC 362 are currently being measured relative to the background of the Small Magellanic Cloud. This paper reports on the reduction routines developed so far for the simultaneous computation of several thousands of stellar proper motions. A preliminary result for NGC 362 is given.


Sign in / Sign up

Export Citation Format

Share Document