scholarly journals Testing stellar proper motions of TGAS stars using data from the HSOY, UCAC5 and PMA catalogues

2018 ◽  
Vol 476 (2) ◽  
pp. 2743-2750 ◽  
Author(s):  
P N Fedorov ◽  
V S Akhmetov ◽  
A B Velichko
2007 ◽  
Vol 3 (S248) ◽  
pp. 244-247 ◽  
Author(s):  
S. Piatek ◽  
C. Pryor

AbstractOver the past several years, our research group has been measuring proper motions for nearby dwarf satellite galaxies using data taken with the Hubble Space Telescope. In order to measure proper motions with an expected size of several tens of milliarcseconds per century using a time baseline of 2-4 years, our work required that positions of stars and QSOs be measured to an accuracy of ~0.25 mas (~0.005 pixel). This contribution reviews the scientific justification of this work and our methodology. It concludes with a few general results and future directions.


1970 ◽  
Vol 7 ◽  
pp. 5-25
Author(s):  
James Newcomb

The discovery and measurement of stellar proper motions has always been associated with machines: for proper motion measurements involve four activities: observation, recording, comparison and measurement. Participation by the astronomer in these activities has step by step been replaced partically or wholly by machines. First the observation and recording functions changed from visual to photographic – with the fine guiding done by the astronomer; then the comparison by the blink microscope and the measurement by visually operated measuring machines. On a comparative time scale, the next step – automation of the comparison and measurement function – has been much money, time, and effort away from the previous steps, but as this presentation and other presentations at this conference will show, machines of varying degrees of automation and astronomer participation are now in operation.


1990 ◽  
Vol 141 ◽  
pp. 407-417
Author(s):  
A. R. Klemola

The Lick proper motion program, one of several using galaxies as a reference frame, is summarized with a statement of work accomplished for the non-Milky Way sky. The problem of identifying relatively transparent regions at low galactic latitudes is discussed, with tabular results presented for 41 windows from the literature having observable galaxies. These fields may be helpful for attaching stellar proper motions directly to the extragalactic frame.


2018 ◽  
Vol 28 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Andreas Eckart

AbstractAt the very beginning of the last millennium Ibn al-Haytham greatly contributed to the investigation of the Milky Way. Here, the only three currently known versions of his work on the location of the Milky Way are compared to each other and discussed. A comparison of the texts and an early translation into German by E. Wiedemann in 1906 reveals several differences that triggered a new critical translation of the passed down text. We give detailed comments on the work and check the validity of Ibn al-Haytham's arguments. We also discuss his work in the framework of the ‘Great Debate’ on the Milky Way that took place around 1920, more than a decade after Wiedemann's translation. We find that Ibn al-Haytham's work is certainly at the peak of the unaided-eye era of the Milky Way's discovery. Through his own argumentation and in comparison to Ptolemy's observations Ibn al-Haytham clearly identifies the Galaxy as an extraterrestrial body that is not part of the atmosphere but much further away than the Moon. With some of his statements on the stellar positions passed down by Ptolemy, Ibn al-Haytham also anticipates the concept of stellar proper motions.


2018 ◽  
Vol 616 ◽  
pp. A12 ◽  
Author(s):  
◽  
A. Helmi ◽  
F. van Leeuwen ◽  
P. J. McMillan ◽  
D. Massari ◽  
...  

Context. Aims. The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Methods. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Results. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1-2.6+6.2 × 1011 M⊙ based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. Conclusions. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.


1988 ◽  
Vol 133 ◽  
pp. 465-468
Author(s):  
H.-J. Tucholke

The proper motions of the galactic globular clusters 47 Tuc and NGC 362 are currently being measured relative to the background of the Small Magellanic Cloud. This paper reports on the reduction routines developed so far for the simultaneous computation of several thousands of stellar proper motions. A preliminary result for NGC 362 is given.


Sign in / Sign up

Export Citation Format

Share Document