Transfer of quantum correlations from light to atoms in the case of irreversible evolution

2010 ◽  
Vol 111 (4) ◽  
pp. 544-556 ◽  
Author(s):  
V. N. Gorbachev ◽  
A. I. Trubilko
Author(s):  
Olivier Darrigol

This chapter covers Boltzmann’s writings about the Boltzmann equation and the H theorem in the period 1872–1875, through which he succeeded in deriving the irreversible evolution of the distribution of molecular velocities in a dilute gas toward Maxwell’s distribution. Boltzmann also used his equation to improve on Maxwell’s theory of transport phenomena (viscosity, diffusion, and heat conduction). The bulky memoir of 1872 and the eponymous equation probably are Boltzmann’s most famous achievements. Despite the now often obsolete ways of demonstration, despite the lengthiness of the arguments, and despite hidden difficulties in the foundations, Boltzmann there displayed his constructive skills at their best.


Author(s):  
Sauro Succi

Like most of the greatest equations in science, the Boltzmann equation is not only beautiful but also generous. Indeed, it delivers a great deal of information without imposing a detailed knowledge of its solutions. In fact, Boltzmann himself derived most if not all of his main results without ever showing that his equation did admit rigorous solutions. This Chapter illustrates one of the most profound contributions of Boltzmann, namely the famous H-theorem, providing the first quantitative bridge between the irreversible evolution of the macroscopic world and the reversible laws of the underlying microdynamics.


2019 ◽  
Vol 123 (14) ◽  
Author(s):  
Alejandro Pozas-Kerstjens ◽  
Rafael Rabelo ◽  
Łukasz Rudnicki ◽  
Rafael Chaves ◽  
Daniel Cavalcanti ◽  
...  
Keyword(s):  

2021 ◽  
Vol 126 (17) ◽  
Author(s):  
S. Köhnke ◽  
E. Agudelo ◽  
M. Schünemann ◽  
O. Schlettwein ◽  
W. Vogel ◽  
...  
Keyword(s):  

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2021 ◽  
Vol 3 (2) ◽  
pp. 262-271
Author(s):  
Pablo Reséndiz-Vázquez ◽  
Ricardo Román-Ancheyta ◽  
Roberto León-Montiel

Transport phenomena in photosynthetic systems have attracted a great deal of attention due to their potential role in devising novel photovoltaic materials. In particular, energy transport in light-harvesting complexes is considered quite efficient due to the balance between coherent quantum evolution and decoherence, a phenomenon coined Environment-Assisted Quantum Transport (ENAQT). Although this effect has been extensively studied, its behavior is typically described in terms of the decoherence’s strength, namely weak, moderate or strong. Here, we study the ENAQT in terms of quantum correlations that go beyond entanglement. Using a subsystem of the Fenna–Matthews–Olson complex, we find that discord-like correlations maximize when the subsystem’s transport efficiency increases, while the entanglement between sites vanishes. Our results suggest that quantum discord is a manifestation of the ENAQT and highlight the importance of beyond-entanglement correlations in photosynthetic energy transport processes.


Sign in / Sign up

Export Citation Format

Share Document