quantum system
Recently Published Documents


TOTAL DOCUMENTS

1557
(FIVE YEARS 365)

H-INDEX

61
(FIVE YEARS 8)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Vadim V. Varlamov ◽  
Larisa D. Pavlova ◽  
Olga S. Babushkina

The group theoretical description of the periodic system of elements in the framework of the Rumer–Fet model is considered. We introduce the concept of a single quantum system, the generating core of which is an abstract C*-algebra. It is shown that various concrete implementations of the operator algebra depend on the structure of the generators of the fundamental symmetry group attached to the energy operator. In the case of the generators of the complex shell of a group algebra of a conformal group, the spectrum of states of a single quantum system is given in the framework of the basic representation of the Rumer–Fet group, which leads to a group-theoretic interpretation of the Mendeleev’s periodic system of elements. A mass formula is introduced that allows giving the termwise mass splitting for the main multiplet of the Rumer–Fet group. The masses of elements of the Seaborg table (eight-periodic extension of the Mendeleev table) are calculated starting from the atomic number Z=3 and going to Z=220. The continuation of the Seaborg homology between lanthanides and actinides is established with the group of superactinides. A 10-periodic extension of the periodic table is introduced in the framework of the group-theoretic approach. The multiplet structure of the extended table’s periods is considered in detail. It is shown that the period lengths of the system of elements are determined by the structure of the basic representation of the Rumer–Fet group. The theoretical masses of the elements of 10th and 11th periods are calculated starting from Z=221 and going to to Z=364. The concept of hypertwistor is introduced.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Jen-Tsung Hsiang ◽  
Bei-Lok Hu

After a brief summary of the four main veins in the treatment of decoherence and quantum to classical transition in cosmology since the 1980s, we focus on one of these veins in the study of quantum decoherence of cosmological perturbations in inflationary universe, the case when it does not rely on any environment. This is what ‘intrinsic’ in the title refers to—a closed quantum system, consisting of a quantum field which drives inflation. The question is whether its quantum perturbations, which interact with the density contrast giving rise to structures in the universe, decohere with an inflationary expansion of the universe. A dominant view which had propagated for a quarter of a century asserts yes, based on the belief that the large squeezing of a quantum state after a duration of inflation renders the system effectively classical. This paper debunks this view by identifying the technical fault-lines in its derivations and revealing the pitfalls in its arguments which drew earlier authors to this wrong conclusion. We use a few simple quantum mechanical models to expound where the fallacy originated: The highly squeezed ellipse quadrature in phase space cannot be simplified to a line, and the Wigner function cannot be replaced by a delta function. These measures amount to taking only the leading order in the relevant parameters in seeking the semiclassical limit and ignoring the subdominant contributions where quantum features reside. Doing so violates the bounds of the Wigner function, and its wave functions possess negative eigenvalues. Moreover, the Robertson-Schrödinger uncertainty relation for a pure state is violated. For inflationary cosmological perturbations, in addition to these features, entanglement exists between the created pairs. This uniquely quantum feature cannot be easily argued away. Indeed, it could be our best hope to retroduce the quantum nature of cosmological perturbations and the trace of an inflation field. All this points to the invariant fact that a closed quantum system, even when highly squeezed, evolves unitarily without loss of coherence; quantum cosmological perturbations do not decohere by themselves.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 75
Author(s):  
Florio M. Ciaglia ◽  
Fabio Di Di Cosmo ◽  
Alberto Ibort ◽  
Giuseppe Marmo ◽  
Luca Schiavone ◽  
...  

This paper begins the study of the relation between causality and quantum mechanics, taking advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger’s picture of quantum mechanics. After identifying causal structures on groupoids with a particular class of subcategories, called causal categories accordingly, it will be shown that causal structures can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system. As a consequence of this, Sorkin’s incidence theorem will be proved and some illustrative examples will be discussed.


2022 ◽  
Vol 258 ◽  
pp. 01006
Author(s):  
Yukinao Akamatsu ◽  
Takahiro Miura

We review recent progress in open quantum system approach to the description of quarkonium in the quark-gluon plasma. A particular emphasis is put on the Lindblad equations for quarkonium and its numerical simulations.


2022 ◽  
pp. 147-181
Author(s):  
David Dell’Angelo ◽  
Sandra E. Brown ◽  
Mohammad R. Momeni Taheri ◽  
Farnaz Alipour Shakib

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025202
Author(s):  
Chao Xiao

Abstract In this paper we have theoretically studied the spatial-temporal evolution of electromagnetic light propagation through a four-level graphene quantum system by using density matrix method and perturbation theory. The four-level graphene quantum medium interacted by an elliptical polarized coupling and a weak probe lights, respectively. We present the analytical solution for solving the Maxwell–Bloch equations for graphene and electromagnetic field in space and time domains. Then, we have analyzed the dynamic control of pulse propagation and optical dual switching in such a laser-driven quantum system. Our theoretical findings show that by adjusting the optical parameters such as elliptical angle i.e. phase difference between right-and-left circularly polarized, one can easily control the absorption spectrum and pulse propagation of the probe light in graphene medium. Our results may have potential applications in designing the new quantum devices for usage in quantum information processing.


2021 ◽  
Vol 16 (6) ◽  
Author(s):  
Ying-Ying Wang ◽  
Sean van Geldern ◽  
Thomas Connolly ◽  
Yu-Xin Wang ◽  
Alexander Shilcusky ◽  
...  
Keyword(s):  

Author(s):  
Zhiming Huang ◽  
Zhenbang Rong ◽  
Yiyong Ye

We study the quantum teleportation under fluctuating electromagnetic field in the presence of a perfectly reflecting boundary. The noisy scheme of quantum teleportation affected by electromagnetic fluctuation is proposed. Then we calculate and investigate the behaviors of entanglement and fidelity, which are closely related to the plane boundary and atomic polarization. After a period of evolution, entanglement and fidelity evolve to zero and nonzero stable value respectively. Fidelity is closely related to the weight parameter and phase parameter of the teleported state. Besides, small two-atom separation makes entanglement and fidelity have better enhancement. Furthermore, the presence of boundary, atomic polarization and two-atom separation offers us more freedom to adjust the performance of the quantum teleportation. The results would give us new insight into quantum communication in an open quantum system since quantum teleportation plays an important role in quantum communication and quantum information.


Sign in / Sign up

Export Citation Format

Share Document