Heat Transfer Enhancement in a Heated Liquid Film under the Action of External Artificial Perturbations

2018 ◽  
Vol 44 (11) ◽  
pp. 969-972
Author(s):  
E. A. Chinnov ◽  
I. A. Sharina
Author(s):  
Yi-Hsuan Huang ◽  
Chiao-Hsin Chen ◽  
Yao-Hsien Liu

Heat transfer of air/water mist flow in a single-side heated vertical duct was experimentally investigated. The mist flow was produced by introducing fine dispersed water droplets into the air stream, and the water–air mass flow ratios were up to 15%. The Reynolds numbers of the air flow were 7900, 16,000, and 24,000. The rib spacing-to-height ratios were 10 and 20 in the current study. Mist flow cooling achieved higher heat transfer rates mainly because of the droplet deposition and liquid film formation on the heated surface. The heat transfer enhancement on the smooth surface by the mist flow was 4–6 times as high as the air flow. On the ribbed surface, a smaller rib spacing of 10 was preferred for air cooling, since the heat transfer enhancement by the flow reattachment was better utilized. However, the rib-induced secondary flow blew away the liquid films on the surface, and the heat transfer enhancement was degraded near the reattachment region for the mist cooling. A larger rib spacing-to-height ratio of 20 thus achieved higher heat transfer because of the liquid film formation beyond the reattachment region. The heat transfer enhancement on the ribbed surface using mist flow was 2.5–3.5 times as high as the air flow. The friction factor of the mist flow was two times as high as the air flow in the ribbed duct.


2005 ◽  
Author(s):  
Liang-Ming Pan ◽  
Xiangfei Liang ◽  
Ming-Dao Xin ◽  
Tien-Chien Jen ◽  
Qinghua Chen

Compared with conventional channels, narrow and micro channels have significant characteristic of heat transfer enhancement. With smooth internal surface, such channels can efficiently avoid encrustation at the washing effect of the high-speed liquid. Moreover, heat transfer elements can be easily assembled. This type of channels have been adopted extensively in many engineering applications, e.g. microelectronic cooling, Advanced Nuclear Reactor, cryogenic, aviation and space technology and thermal engineering. In recent years, much work was focused upon flow patterns, heat transfer and pressure drop. Almost everyone thought the heat transfer enhancement mechanism of narrow and micro channels to be bubbles’ deformation and disturbance, which is insufficient to explain the heat transfer enhancement. In present work, an innovative model of quasi-one-dimensional vapor liquid two-phase concurrent separated flow was proposed for boiling heat transfer in vertical narrow rectangular space. Numerical results such as boiling heat transfer coefficient and liquid film thickness were obtained. Comparison of model results with reported experimental correlation indicates that the proposed model can predict heat transfer in narrow channels correctly, with the relative deviation less than 14%. Numerical simulating result confirms that heat conduction through liquid film is the predominant mechanism of boiling heat transfer in vapor liquid separated flow region in a vertical narrow rectangular space.


Author(s):  
Tholudin Mat Lazim ◽  
Zaid Sattar Kareem ◽  
M. N. Mohd Jaafar ◽  
Shahrir Abdullah ◽  
Ammar F. Abdulwahid

Sign in / Sign up

Export Citation Format

Share Document