Nonboiling Heat Transfer and Friction of Air/Water Mist Flow in a Square Duct With Orthogonal Ribs

Author(s):  
Yi-Hsuan Huang ◽  
Chiao-Hsin Chen ◽  
Yao-Hsien Liu

Heat transfer of air/water mist flow in a single-side heated vertical duct was experimentally investigated. The mist flow was produced by introducing fine dispersed water droplets into the air stream, and the water–air mass flow ratios were up to 15%. The Reynolds numbers of the air flow were 7900, 16,000, and 24,000. The rib spacing-to-height ratios were 10 and 20 in the current study. Mist flow cooling achieved higher heat transfer rates mainly because of the droplet deposition and liquid film formation on the heated surface. The heat transfer enhancement on the smooth surface by the mist flow was 4–6 times as high as the air flow. On the ribbed surface, a smaller rib spacing of 10 was preferred for air cooling, since the heat transfer enhancement by the flow reattachment was better utilized. However, the rib-induced secondary flow blew away the liquid films on the surface, and the heat transfer enhancement was degraded near the reattachment region for the mist cooling. A larger rib spacing-to-height ratio of 20 thus achieved higher heat transfer because of the liquid film formation beyond the reattachment region. The heat transfer enhancement on the ribbed surface using mist flow was 2.5–3.5 times as high as the air flow. The friction factor of the mist flow was two times as high as the air flow in the ribbed duct.

Author(s):  
Yi-Hsuan Huang ◽  
Chiao-Hsin Chen ◽  
Yao-Hsien Liu

Heat transfer of mist flow in a rib-roughened square duct was experimentally determined using infrared thermography. The mist flow was generated by introducing fine dispersed water droplets into the air stream. A constant heat flux was applied to the surface during the test and the surface temperature was kept below the boiling point. The heat transfer measurement was performed on a heated surface located inside a vertical square duct with a hydraulic diameter of 4cm. The air/water mist flow was carried upward by air flow from a blower placed at the bottom of the duct. The flow passed through a flow straightener and entered the heated region of the square duct. The Reynolds numbers of the carrier fluid were 7900, 16000 and 24000. The results showed that mist flow cooling achieved higher heat transfer rates compared to the air cooling. Thin liquid films formed on the heated surface by the mist flow and the evaporation from the droplets and liquid film contributed to a higher heat removal rate. The heat transfer enhancement on the smooth surface by the mist flow was 4 to 6 times higher compared to the air flow. Rib turbulators were typically applied in channel walls for heat transfer enhancement in gas turbine blades or heat exchangers. Ribs caused flow reattachment and promoted flow mixing. The higher Nusselt number induced by flow reattachment can be visualized using infrared thermography. For the ribbed case, the heat transfer contours were reported based the regions between ribs. Square brass ribs were used and the rib height-to-hydraulic diameter ratio was 0.05. The rib pitch-to-height ratios were 10 and 20 in the current study. For the mist flow in the ribbed duct, the intense flow mixing and secondary flow caused by the ribs blew away liquid films on the surface. The heat transfer enhancement near the reattachment region was mainly influenced by the droplet impingement on the surface. In the ribbed duct, the heat transfer enhancement from using the mist flow was 2.5 to 3.5 times higher compared to the air flow.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 813 ◽  
Author(s):  
Parkpoom Sriromreun ◽  
Paranee Sriromreun

This research was aimed at studying the numerical and experimental characteristics of the air flow impinging on a dimpled surface. Heat transfer enhancement between a hot surface and the air is supposed to be obtained from a dimple effect. In the experiment, 15 types of test plate were investigated at different distances between the jet and test plate (B), dimple diameter (d) and dimple distance (Er and Eθ). The testing fluid was air presented in an impinging jet flowing at Re = 1500 to 14,600. A comparison of the heat transfer coefficient was performed between the jet impingement on the dimpled surface and the flat plate. The velocity vector and the temperature contour showed the different air flow characteristics from different test plates. The highest thermal enhancement factor (TEF) was observed under the conditions of B = 2 d, d = 1 cm, Er= 2 d, Eθ = 1.5 d and Re = 1500. This TEF was obtained from the dimpled surface and was 5.5 times higher than that observed in the flat plate.


2000 ◽  
Vol 123 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Keith A. Batchelder ◽  
John K. Eaton

The heat transfer from a short uniform heat flux strip beneath a turbulent boundary layer with and without freestream turbulence was measured using a liquid crystal imaging technique. Freestream turbulence intensities were on the order of 12 percent. Data were taken at momentum thickness Reynolds numbers on the order of 1000 and 2000 for the turbulent and steady freestreams, respectively. Heat transfer enhancement due to the presence of freestream turbulence was quantified in terms of the ratio of the average St’s on the strip: turbulent freestream divided by steady freestream. Compared to the baseline case of a uniformly heated surface upstream of the strip, the heat transfer enhancement decreased by 20 percent. The temperature distribution measured on and downstream of the heated strip represented one column of a discrete Greens function that was used to predict the heat transfer for any arbitrarily specified thermal boundary condition given the same flowfield. Predictions are compared against correlations and numerical predictions as well as data from the literature. The details and practical applications of this approach to handling heat transfer with non-uniform thermal boundary conditions are presented.


Sign in / Sign up

Export Citation Format

Share Document