moist air
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 119)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
Sneha Dey ◽  
◽  
A. Ghorai ◽  

Exploration of dynamics of raindrops is one of the simple yet most complicated mechanical problems. Mass accretion from moist air during the motion of raindrop through resistive medium holds an arbitrary power law equation. Its integral part is the change of shape, terminal motions and terminal solutions, etc. Classical Newtonian formalism is used to formulate a mathematical model of generalized first order differential equation. We have discussed about the terminal velocity of raindrop and its variation with the extensive use of python program and library. It is found that terminal velocity 𝐯𝐓𝐜𝛂𝛃 is achieved within 20 seconds where 𝛂=, 𝛃=(𝟎,𝟏) and 𝐧=𝟎,𝟏,𝟐,𝟑,𝟒,…. Its variations due to mass accretion roughly follows the earlier predicted range 𝐠/𝟕 to 𝐠/𝟑.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 59
Author(s):  
Sebastian Lück ◽  
Tim Wittmann ◽  
Jan Göing ◽  
Christoph Bode ◽  
Jens Friedrichs

A mobile fuel cell systems power output can be increased by pressure amplification using an electric turbocharger. These devices are subject to frequent transient manoeuvres due to a multitude of load changes during the mission in automotive applications. In this paper, the authors describe a simulation approach for an electric turbocharger, considering the impact of moist air and condensation within the cathode gas supply system. Therefore, two simulation approaches are used: an iterative simulation method and one based on a set of ordinary differential equations. Additional information is included from turbine performance maps taking into account condensation using Euler–Lagrange CFD simulations, which are presented. The iterative calculation approach is well suited to show the impact of condensation and moist air on the steady state thermodynamic cycle and yields a significant shift of the steady state operating line towards the surge line. It is shown that a substantial risk of surge occurs during transient deceleration manoeuvres triggered by a load step.


2022 ◽  
Vol 70 (1) ◽  
Author(s):  
Weicong Gu ◽  
Shunshun Qi ◽  
Wenhao He ◽  
Ke Chu ◽  
Zhibin Lu ◽  
...  

2022 ◽  
Author(s):  
Edward Hindman ◽  
Scott Lindstrom

Abstract. Mt. Everest’s summit pyramid is the highest obstacle on earth to the wintertime jet-stream winds. Downwind, in its wake, a visible plume often forms. The meteorology and composition of the plume are unknown. Accordingly, we observed real-time images from a geosynchronous meteorological satellite from November 2020 through March 2021 to identify plumes and collect the corresponding meteorological data. We used the data with a basic meteorological model to show the plumes formed when sufficiently moist air was drawn into the wake. We conclude the plumes were composed initially of either cloud droplets or ice particles depending on the temperature. One plume was observed to glaciate downwind. Thus, Everest plumes may be a source of snowfall formed insitu. The plumes, however, were not composed of resuspended snow.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-20
Author(s):  
Lukas Papritz ◽  
David Hauswirth ◽  
Katharina Hartmuth

Abstract. A substantial portion of the moisture transport into the Arctic occurs in episodic, high-amplitude events with strong impacts on the Arctic's climate system components such as sea ice. This study focuses on the origin of such moist-air intrusions during winter and examines the moisture sources, moisture transport pathways, and their linkage to the driving large-scale circulation patterns. For that purpose, 597 moist-air intrusions, defined as daily events of intense (exceeding the 90th anomaly percentile) zonal mean moisture transport into the polar cap (≥70∘ N), are identified. Kinematic backward trajectories combined with a Lagrangian moisture source diagnostic are then used to pinpoint the moisture sources and characterize the airstreams accomplishing the transport. The moisture source analyses show that the bulk of the moisture transported into the polar cap during these moist-air intrusions originates in the eastern North Atlantic with an uptake maximum poleward of 50∘ N. Trajectories further reveal an inverse relationship between moisture uptake latitude and the level at which moisture is injected into the polar cap, consistent with ascent of poleward-flowing air in a baroclinic atmosphere. Focusing on intrusions in the North Atlantic (424 intrusions), we find that lower tropospheric moisture transport is predominantly accomplished by two types of airstreams: (i) cold, polar air warmed and moistened by surface fluxes and (ii) air subsiding from the mid-troposphere into the boundary layer. Both airstreams contribute about 36 % each to the total transport. The former accounts for most of the moisture transport during intrusions associated with an anomalously high frequency of cyclones east of Greenland (218 intrusions), whereas the latter is more important in the presence of atmospheric blocking over Scandinavia and the Ural Mountains (145 events). Long-range moisture transport, accounting for 17 % of the total transport, dominates during intrusions with weak forcing by baroclinic weather systems (64 intrusions). Finally, mid-tropospheric moisture transport is invariably associated with (diabatically) ascending air and moisture origin in the central and western North Atlantic, including the Gulf Stream front, accounting for roughly 10 % of the total transport. In summary, our study shows that moist-air intrusions into the polar atmosphere result from a combination of airstreams with predominantly high-latitude or high-altitude origin, whose relative importance is determined by the underlying driving weather systems (i.e., cyclones and blocks).


Author(s):  
Yu-heng Gu ◽  
Yu-dong Ding ◽  
Qiang Liao ◽  
Min Cheng ◽  
Xun Zhu ◽  
...  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012150
Author(s):  
M V Gorbachev ◽  
V I Terekhov

Abstract Modeling of heat and mass transfer processes in a horizontal channel during evaporative cooling of a moist air flow with regard to the finite thickness of the liquid film is considered. The mathematical model consists of a system of differential equations in the boundary layer approximation. The simulation results have been obtained in a wide range of initial parameters: temperature T 0 = 10÷50°C, humidity φ0=0÷100%, Reynolds number Re=100÷2000. Calculations were carried out at atmospheric pressure. Quantitative analysis of influence of initial parameters of flows on values of parameters of wet air flow at the outlet of the channel with and without taking into account the final thickness of the water film was carried out.


Sign in / Sign up

Export Citation Format

Share Document