Navigation problem solution by the Resurs-P satellite navigation system

2015 ◽  
Vol 6 (2) ◽  
pp. 79-86
Author(s):  
R. N. Akhmetov ◽  
G. P. Anshakov ◽  
A. I. Manturov ◽  
V. I. Rublev
Author(s):  
Sergey K. Kiselev ◽  
◽  
Tuan T. Van ◽  

The article discusses the determination of navigational data corruption, which received by the satellite navigation system as well as traffic control of ground mobile robots. It also specifies the movement features of ground robots, which affect the data integrity monitoring. It proposes an algorithm of control to implement the methods of autonomous onboard monitoring of the navigational data integrity. The algorithm is based on the equations of signal correspondence in various parts of the control system. It is designed to determine the inoperability of the satellite navigation system that implies the loss of signal and failure in the navigation problem solution. The algorithm takes into account the non-deterministic nature of moving ground robot with possible stops in the process of following the trajectory. The article considers the implementation variants of algorithm to assess reliability for the control system containing additional sensors of the robot’s displacement and for the hardware-redundant system containing no additional sensors. The results of modeling the movement of a ground mobile robot along an arbitrary trajectory in case of navigational data corruption are presented. The features of algorithm based on the simulation results are described in the article. The authors considered variants of robot control in case of navigational data corruption. The structure of the system and a method for controlling a mobile robot in case of satellite navigation system failures are also proposed. The method is based on the control mode in the system, according to the measured data of the position of the robot in the case of navigational data corruption or otherwise according to the data calculated from the robot model. The implementation of the method makes it possible to avoid significant deviations of the robot from a given trajectory of movement at intervals of signal loss of the satellite navigation system.


2020 ◽  
Vol 25 (5) ◽  
pp. 465-474
Author(s):  
V.O. Zhilinskiy ◽  
◽  
D.S. Pecheritsa ◽  
L.G. Gagarina ◽  
◽  
...  

The Global Navigation Satellite System has a huge impact on both the public and private sectors, including the social-economic development, it has many applications and is an integral part of many domains. The application of the satellite navigation systems remains the most relevant in the field of transport, including land, air and maritime transport. The GLONASS system consists of three segments and the operation of the entire system depends on functioning of each component, but primarily, the accuracy of measurements depends on the basis forming of the control segment and management, responsible for forming ephemeris-time information. In the work, the influence of ephemeris-time information on the accuracy of solving the navigation problem by the signals of the GLONASS satellite navigation system has been analyzed. The influence of both ephemeris information and the frequency information, and of the time corrections has been individually studied. The accuracy of the ephemeris-time information is especially important when solving the navigation problem by highly precise positioning method. For the analysis the following scenarios of the navigation problem solving have been formed: using high-precision and broadcast ephemeris-time information, a combination of broadcast (high-precision) ephemeris-time information, and high-precision (broadcast) satellite clock offsets and two scenarios with simulation of the calculation of the relative correction to the radio signal carrier frequency. Based on the study results it has been concluded that the contribution of the frequency-time corrections to the error of location determination is of the greatest importance and a huge impact on the error location, while the errors of the ephemeris information are insignificant


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Yang ◽  
Yunhan Zhang ◽  
Haote Ruan

The BeiDou Satellite Navigation System of China can provide users with high precision, as well as all-weather and real-time positioning and navigation information. It can be widely used in many applications. However, new challenges appear with the expansion of the 5G communication system. To eradicate or weaken the influence of various errors in BeiDou positioning, a BeiDou satellite positioning algorithm based on GPRS technology is proposed. According to the principles of the BeiDou Satellite navigation system, the navigation and positioning data are obtained and useful information are extracted and sent to the communication network through the wireless module. The error is corrected by establishing a real-time kinematic (RTK) mathematical model, and the pseudorange is calculated by carrier phase to further eliminate the relativistic and multipath errors. Based on the results of error elimination, the BeiDou satellite positioning algorithm is improved and the positioning error is corrected. The experimental results show that the positioning accuracy and efficiency of the algorithm can meet the actual needs of real-time dynamic positioning systems.


Sign in / Sign up

Export Citation Format

Share Document