Molecular geometry of ribofuranoses obtained from semi-empirical MO calculations

1983 ◽  
Vol 48 (2) ◽  
pp. 504-510
Author(s):  
Jiří Krechl ◽  
Josef Kuthan

Molecular geometry of ribofuranoses I - VIII has been optimized with respect to all degrees of freedom on the basis of CNDO/2 wave functions. The results obtained are confronted with previous results of partial optimizations.

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 408
Author(s):  
Matteo Villani ◽  
Guillermo Albareda ◽  
Carlos Destefani ◽  
Xavier Cartoixà ◽  
Xavier Oriols

Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).


1967 ◽  
Vol 22 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Walter A. Yeranos ◽  
David A. Hasman

Using the recently proposed reciprocal mean for the semi-empirical evaluation of resonance integrals, as well as approximate SCF wave functions for Co3+, the one-electron molecular energy levels of Co (NH3) 3+, Co (NH3) 5Cl2+, and Co (NH3) 4Cl21+ have been redetermined within the WOLFSBERG–HELMHOLZ approximation. The outcome of the study fits remarkably well with the observed electronic transitions in the u.v. spectra of these complexes and prompts different band assignments than previously suggested.


2004 ◽  
Vol 59 (11) ◽  
pp. 853-856
Author(s):  
H. Kara ◽  
Y. Yahsi ◽  
Y. Elerman ◽  
A. Elmali

Semi-empirical AM1 SCF-MO calculations have been used to find the structure optimization and conformational interconversion pathways of a system containing a six-membered ring. The system has the two symmetrical energy-minimum conformations, chair and twist. The chair conformation has the most stable geometry. Some quantum parameters such as HOMO and LUMO energy, the chemical hardness and chemical potential are discussed


2019 ◽  
Vol 25 (14) ◽  
pp. 1991-2007 ◽  
Author(s):  
Carlos R. dos Santos ◽  
Flávio D. Marques ◽  
Muhammad R. Hajj

An airfoil may undergo stall-induced oscillations beyond the critical flutter speed with amplitudes determined by aerodynamic nonlinearities due to the dynamic stall. Stall-induced oscillations yield intense periodical motions that can be used to convert the airflow energy into electrical power. The inclusion of structural nonlinearities contributes to the complexity of the aeroelastic response. In this sense, the present work models and analyzes for the first time the effects of structural and aerodynamic nonlinearities in the potential of extracting energy from pitching and plunging motions of an airfoil during stall-induced oscillations. A computational model is employed, based on the electro-aeroelastic differential equations modeling a typical aeroelastic section with two degrees of freedom with an electrical generator connected to the pitching motion and a piezoelectric element connected to the plunging motion. The Beddoes–Leishman semi-empirical model is used to represent the unsteady aerodynamic loading. Concentrated structural nonlinearities, such as the hardening effect and free-play, are also considered. Bifurcation diagrams and harvested power calculations are used to analyze the performance of each energy harvesting scheme. The results show that nonlinear pitching stiffness reduces the average harvested power from this degree of freedom in a range of wind speeds. However, the presence of a free-play spring reduces the flutter velocity and initiates the harvesting at lower wind speeds. In conclusion, the present electro-aeroelastic model can be used to find optimal parameters of a harvester from airfoil stall-induced oscillations for a specific application.


1992 ◽  
Vol 47 (9) ◽  
pp. 971-973 ◽  
Author(s):  
A. Kawski ◽  
P. Bojarski ◽  
A. Kubicki

Abstract The influence of the moment of inertia on the rotational fluorescence depolarization is discussed. Based on experimental results obtained for five luminescent compounds: 2,5-diphenyloxazole (PPO), 2,2'-p-phenylene-bis(5-phenyloxazole) (POPOP), p-bis[2-(5-α-naphthyloxazolyl)]-benzene (α-NOPON), 4-dimethylamino-ω-methylsulphonyl-trans-styrene (3a) in n-parafines at low viscosity (from 0.22 x 10-3 Pa • s to 0.993 x 10-3 Pa • s) and diphenylenestilbene (DPS) in different solvents, a semi-empirical equation is proposed, yielding moments of inertia that are only two to five times higher than those estimated from the molecular geometry


Sign in / Sign up

Export Citation Format

Share Document