A topological quantum-chemical study of the chemisorption of carbon monoxide on the fcc (112) surfaces of Ni, Pt, Pd, Rh, and Ir

1990 ◽  
Vol 55 (8) ◽  
pp. 1907-1919
Author(s):  
Jiří Pancíř ◽  
Ivana Haslingerová

A semiempirical quantum-chemical topological method is applied to the study of the fcc (112) surfaces of Ni, Pt, Pd, Rh, and Ir and the nondissociative as well as dissociative chemisorption of carbon monoxide on them. On Ni, dissociative chemisorption is preferred to linear capture, whereas on Pd and Pt, linear capture is preferred although dissociative chemisorption is also feasible. On Rh and, in particular, on Ir, dissociative chemisorption is energetically prohibited. The high dissociative ability of the Ni surface can be ascribed to a rather unusual charge alteration and to the degeneracy of the frontier orbitals. Negative charges at the surface level are only found on the Ni and Pt surfaces whereas concentration of positive charges is established on the Rh and Ir surfaces; the Pd surface is nearly uncharged. Metals with negatively charged surfaces seem to be able to dissociate molecules of carbon monoxide. It is demonstrated that CO adsorption can take place on all metal surface sites, most effectively in the valley of the step. In all the cases studied, the attachment to the surface is found to be energetically more favourable for the carbon than for the oxygen.

2006 ◽  
Vol 125 (19) ◽  
pp. 194707 ◽  
Author(s):  
Ajay M. Joshi ◽  
Mark H. Tucker ◽  
W. Nicholas Delgass ◽  
Kendall T. Thomson

2018 ◽  
Vol 209 ◽  
pp. 00008
Author(s):  
Galiya Galimova ◽  
Valeriy Azyazov ◽  
Alexander Mebel

An important environmental problem related to the use of fossil fuels is the formation of soot during combustion. Mechanisms of soot oxidation, which alleviates its emission into the environment, are not fully understood. The reaction of O with a radical C15H9 may play an important role in combustion. In this article, the C15H9 molecule was chosen as a model of soot surface. The paper discusses various pathways resulting from the C15H9 + O reaction. Relative energies, frequencies and optimal geometries of the reactants, products, intermediates and transition states of the C15H9 + O reaction have been calculated using the quantum-chemical Gaussian and Molpro program packages. The reaction pathways leading to carbon monoxide CO elimination have been found and dscussed.


Sign in / Sign up

Export Citation Format

Share Document