atomic oxygen
Recently Published Documents


TOTAL DOCUMENTS

2669
(FIVE YEARS 238)

H-INDEX

82
(FIVE YEARS 7)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 257
Author(s):  
Avraham I. Bram ◽  
Irina Gouzman ◽  
Asaf Bolker ◽  
Nurit Atar ◽  
Noam Eliaz ◽  
...  

In order to use polymers at low Earth orbit (LEO) environment, they must be protected against atomic oxygen (AO) erosion. A promising protection strategy is to incorporate polyhedral oligomeric silsesquioxane (POSS) molecules into the polymer backbone. In this study, the space durability of epoxy-POSS (EPOSS) nanocomposites was investigated. Two types of POSS molecules were incorporated separately—amine-based and epoxy-based. The outgassing properties of the EPOSS, in terms of total mass loss, collected volatile condensable material, and water vapor regain were measured as a function of POSS type and content. The AO durability was studied using a ground-based AO simulation system. Surface compositions of EPOSS were studied using high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that with respect to the outgassing properties, only some of the EPOSS compositions were suitable for the ultrahigh vacuum space environment, and that the POSS type and content had a strong effect on their outgassing properties. Regardless of the POSS type being used, the AO durability improved significantly. This improvement is attributed to the formation of a self-passivated AO durable SiO2 layer, and demonstrates the potential use of EPOSS as a qualified nanocomposite for space applications.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 322
Author(s):  
Hong Qi ◽  
Qingshan Shi ◽  
Yuhai Qian ◽  
Yueming Li ◽  
Jingjun Xu ◽  
...  

In this work, the atomic oxygen (AO) erosion-resistance effect and mechanism of the Perhydropolysilazane (PHPS) coating were investigated from the perspective of element distribution in the depth direction. The results revealed that the coating demonstrated good adhesion and intrinsic AO erosion-resistance, which was attributed to the composition gradient formed in the coating. Moreover, the oxygen ratio of the SiOx on top layer of the coating could be elevated during AO exposure, strengthening the Ar ion etching durability of the coating. According to these results, an AO erosion-resistance mechanism model of the PHPS-derived SiOx coating was finally obtained.


2022 ◽  
Author(s):  
Kaan K. Kirmanoglu ◽  
Nicholas A. Anderson ◽  
Francesco Panerai ◽  
Kelly A. Stephani ◽  
Joseph C. Ferguson ◽  
...  

2022 ◽  
Author(s):  
Elena Plis ◽  
Miles Bengtson ◽  
Daniel P. Engelhart ◽  
Gregory Badura ◽  
Timothy Scott ◽  
...  

2022 ◽  
Vol 2150 (1) ◽  
pp. 012026
Author(s):  
N M Barbin ◽  
A M Kobelev ◽  
D I Terent’ev ◽  
S A Titov

Abstract In this work, the composition and thermophysical properties of the “Reactor graphite-H2O” system at temperatures from 2123 to 3223 K are calculated. It was found that the main components of the vapor phase at a temperature of 2123-2923 K: carbon dioxide, carbon monoxide, water vapor, hydroxide, hydrogen, atomic hydrogen. At temperatures above 3223 K, oxygen and atomic oxygen are added to the gases present. The balances of uranium and plutonium are considered. Uranium at temperatures above 2123 K is present in the system in the form of gaseous and ionized uranium dioxide and trioxide. Plutonium at temperatures above 2123 K is present in the system in the form of gaseous and ionized plutonium oxide, gaseous plutonium dioxide. The calculation of thermophysical properties for the considered system is carried out.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Jacob Kleiman

A surface modification process was developed for the metalized Teflon coverings used for thermal protection of electronic equipment on the International Space Station [1]. The developed modification process of Teflon surfaces reduced substantially the specularity of Ag-Inconel coated Teflon thermal control films by changing the morphological appearance of their surfaces by ion-beam texturing in a controlled manner from a metallic-like and shiny to complete milky, white appearance without significantly affecting the thermal optical properties. A number of space hardware units covered with the textured Silver-Teflon were exposed to the open space environment between June 2002 and June 2006 and delivered back to Earth at the end of 2006. Remarkable performance was demonstrated by the treated Ag/Teflon, with the solar absorptance and total emittance values and the α/ε ratio remaining very close to the original values as measured before the flights [2]. In an attempt to protect further the textured surfaces of Teflon from possible erosion by atomic oxygen and VUV in LEO environment, an additional novel surface modification process was developed that created an SixOyCzFn type of structure on the treated surface. The textured Teflon samples before and after surface treatments were tested in a space simulator facility under a combined atomic oxygen/vacuum ultraviolet exposure.  A number of advanced characterization techniques were used to evaluate the properties of the modified films [3].


2021 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Andrei Saunkin ◽  
Roman Vasilyev ◽  
Olga Zorkaltseva

The research studied the comparison of the night air temperatures and the atomic oxygen airglow intensities at the mesopause obtained with satellite and ground-based instruments. Satellite data used in this study were obtained with the SABER limb-scanning radiometer operating aboard the TIMED satellite. Data of ground-based monitoring were obtained using the KEO Scientific “Arinae” Fabry–Pérot interferometer adapted for aeronomic research. Since an interferometer detects parameters of the 557.7 nm line for the entire emission layer, it is not quite appropriate to perform a direct comparison between the upper atmospheric temperature obtained from ground-based observations and that from a satellite at a particular height. To compare temperatures correctly, the effective temperature must be calculated based on satellite data. The effective temperature is a height-averaged temperature profile with the weight factors equal to the 557.7 nm line intensity at relevant heights. The height profile of intensity of this natural green airglow of the upper atmosphere is calculated from the height profile of atomic oxygen concentration. Data on chemical composition and air temperature at the mesopause from SABER were used to calculate the profiles. The night intensity of the 557.7 nm emission obtained from satellite data in this way was in good accordance with the results of ground-based observations, but the temperatures were different. The reason for temperature discrepancy was assumed to lie in the incorrect position of the intensity maximum of the reconstructed emission layer. According to our calculations based on SABER data, the intensity peak was observed at the height of 94–95 km. By shifting it relative to the SABER temperature height profile, we re-calculated the effective temperatures and compared them with the interferometer data. The best coincidence between seasonal temperature variations obtained using the proposed method was achieved when the maximum of the reconstructed 557.7 nm intensity height profile was shifted to 97 km, but it could not eliminate minor local differences in temperature behavior.


Sign in / Sign up

Export Citation Format

Share Document