layer deposition
Recently Published Documents





2022 ◽  
Vol 284 ◽  
pp. 116995
Amélie Schultheiss ◽  
Abderrahime Sekkatz ◽  
Viet Huong Nguyen ◽  
Alexandre Carella ◽  
Anass Benayad ◽  

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Jiawei Li ◽  
Junren Xiang ◽  
Ge Yi ◽  
Yuanting Tang ◽  
Huachen Shao ◽  

Surface residual lithium compounds of Ni-rich cathodes are tremendous obstacles to electrochemical performance due to blocking ion/electron transfer and arousing surface instability. Herein, ultrathin and uniform Al2O3 coating via atomic layer deposition (ALD) coupled with the post-annealing process is reported to reduce residual lithium compounds on single-crystal LiNi0.6Mn0.2Co0.2O2 (NCM622). Surface composition characterizations indicate that LiOH is obviously reduced after Al2O3 growth on NCM622. Subsequent post-annealing treatment causes the consumption of Li2CO3 along with the diffusion of Al atoms into the surface layer of NCM622. The NCM622 modified by Al2O3 coating and post-annealing exhibits excellent cycling stability, the capacity retention of which reaches 92.2% after 300 cycles at 1 C, much higher than that of pristine NCM622 (34.8%). Reduced residual lithium compounds on NCM622 can greatly decrease the formation of LiF and the degree of Li+/Ni2+ cation mixing after discharge–charge cycling, which is the key to the improvement of cycling stability.

2022 ◽  
Woochang Kim ◽  
Wonseok Lee ◽  
Seung-Mo Lee ◽  
Duckjong Kim ◽  
Jinsung Park

Abstract We propose a method of improving the thermoelectric properties of graphene using defect engineering through plasma irradiation and atomic layer deposition (ALD). We intentionally created atomic blemishes in graphene by oxygen plasma treatment and subsequently healed the atomistically defective places using Pt-ALD. After healing, the thermal conductivity of the initially defective graphene increased slightly, while the electrical conductivity and the square of the Seebeck coefficient increased pronouncedly. The thermoelectric figure of merit of the Pt-ALD treated graphene was measured to be over 4.8 times higher than the values reported in the literature. We expect that our study could provide a useful guideline for the development of graphene-based thermoelectric devices.

2022 ◽  
Vol 13 (1) ◽  
Zhe Gao ◽  
Guofu Wang ◽  
Tingyu Lei ◽  
Zhengxing Lv ◽  
Mi Xiong ◽  

AbstractThe contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 432
Eva Magovac ◽  
Bojana Vončina ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.

2022 ◽  
Vol 12 (1) ◽  
Zahilia Cabán Huertas ◽  
Daniel Settipani ◽  
Cristina Flox ◽  
Joan Ramon Morante ◽  
Tanja Kallio ◽  

AbstractThis paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li ion batteries (LIBs). Atomic layer deposition (ALD) of the metal combined with the molecular layer deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150 °C deliver the highest capacity and best current response of 1800 mAh g−1 at 0.1 C and 150 mAh g−1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAh g−1 at 0.1 C but fails to deliver capacity at 20 C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200 mAh g−1 at 1 C for 350 cycles with a capacity retention of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics and electronic conductivity as demonstrated by equivalent circuit analysis of low frequency impedance data and conductivity measurements. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies (CE) and improves long cycling stability by reducing capacity lost.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 446
Minghui Zhang ◽  
Fang Lin ◽  
Wei Wang ◽  
Feng Wen ◽  
Genqiang Chen ◽  

In this work, a hydrogen-terminated (H-terminated) diamond field effect transistor (FET) with HfAlOx/Al2O3 bilayer dielectrics is fabricated and characterized. The HfAlOx/Al2O3 bilayer dielectrics are deposited by the atomic layer deposition (ALD) technique, which can protect the H-terminated diamond two-dimensional hole gas (2DHG) channel. The device demonstrates normally-on characteristics, whose threshold voltage (VTH) is 8.3 V. The maximum drain source current density (IDSmax), transconductance (Gm), capacitance (COX) and carrier density (ρ) are −6.3 mA/mm, 0.73 mS/mm, 0.22 μF/cm2 and 1.53 × 1013 cm−2, respectively.

Sign in / Sign up

Export Citation Format

Share Document