scholarly journals Genetic data and electronic health records: a discussion of ethical, logistical and technological considerations

2014 ◽  
Vol 21 (1) ◽  
pp. 171-180 ◽  
Author(s):  
Kimberly Shoenbill ◽  
Norman Fost ◽  
Umberto Tachinardi ◽  
Eneida A Mendonca
2020 ◽  
Author(s):  
Nansu Zong ◽  
Victoria Ngo ◽  
Daniel J. Stone ◽  
Andrew Wen ◽  
Yiqing Zhao ◽  
...  

BACKGROUND Precision oncology has the potential to leverage clinical and genomic data in advancing disease prevention, diagnose, and treatments. A key research area focuses on early detection of primary cancers and the potential prediction of cancers of unknown primary in order to facilitate optimal treatment decisions. OBJECTIVE This study presents a methodology to harmonize phenotypic and genetic data features to classify primary cancer types and predict unknown primaries. METHODS We extracted the genetic data elements from a collection of oncology genetic reports of 1,011 cancer patients, and corresponding phenotypical data from the Mayo Clinic electronic health records (EHRs). We modeled both genetic and EHR data with HL7 Fast Healthcare Interoperability Resources (FHIR). The semantic web Resource Description Framework (RDF) was employed to generate the network-based data representation (i.e., patient-phenotypic-genetic network). Based on RDF data graph, graph embedding algorithm Node2vec was applied to generate features, and then multiple machine learning and deep learning backbone models were adopted for cancer prediction. RESULTS With six machine-learning tasks designed in the experiment, we demonstrated the proposed method achieved favorable results in classifying primary cancer types and predicting unknown primaries. To demonstrate the interpretability, phenotypic and genetic features that contributed the most to the prediction of each cancer were identified and validated based on a literature review. CONCLUSIONS Accurate prediction of cancer types can be achieved with existing EHR data with satisfactory precision. The integration of genetic reports improves prediction, illustrating the translational values of incorporating genetic tests early at the diagnose stage for cancer patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruowang Li ◽  
Rui Duan ◽  
Xinyuan Zhang ◽  
Thomas Lumley ◽  
Sarah Pendergrass ◽  
...  

AbstractIncreasingly, clinical phenotypes with matched genetic data from bio-bank linked electronic health records (EHRs) have been used for pleiotropy analyses. Thus far, pleiotropy analysis using individual-level EHR data has been limited to data from one site. However, it is desirable to integrate EHR data from multiple sites to improve the detection power and generalizability of the results. Due to privacy concerns, individual-level patients’ data are not easily shared across institutions. As a result, we introduce Sum-Share, a method designed to efficiently integrate EHR and genetic data from multiple sites to perform pleiotropy analysis. Sum-Share requires only summary-level data and one round of communication from each site, yet it produces identical test statistics compared with that of pooled individual-level data. Consequently, Sum-Share can achieve lossless integration of multiple datasets. Using real EHR data from eMERGE, Sum-Share is able to identify 1734 potential pleiotropic SNPs for five cardiovascular diseases.


2019 ◽  
Vol 25 (4) ◽  
pp. 289 ◽  
Author(s):  
Haleh Ayatollahi ◽  
Seyedeh Fatemeh Hosseini ◽  
Morteza Hemmat

2016 ◽  
Vol 34 (2) ◽  
pp. 163-165 ◽  
Author(s):  
William B. Ventres ◽  
Richard M. Frankel

Sign in / Sign up

Export Citation Format

Share Document