scholarly journals Non-secretion of ABO blood group antigens as a host susceptibility factor in the spondyloarthropathies.

BMJ ◽  
1987 ◽  
Vol 294 (6566) ◽  
pp. 208-210 ◽  
Author(s):  
R Shinebaum ◽  
C C Blackwell ◽  
P J Forster ◽  
N P Hurst ◽  
D M Weir ◽  
...  
2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Xiaoman Sun ◽  
Lihong Wang ◽  
Jianxun Qi ◽  
Dandi Li ◽  
Mengxuan Wang ◽  
...  

ABSTRACTGroup/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines.IMPORTANCEGroup/species C rotaviruses (RVCs), members ofReoviridaefamily, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.


1971 ◽  
Vol 104 (1) ◽  
pp. 93-98 ◽  
Author(s):  
TAKUSABURO EBINA ◽  
MORIO HOMMA ◽  
NAKAO ISHIDA ◽  
TOSHIYUKI KUDO

1985 ◽  
Vol 147 (3) ◽  
pp. 267-272 ◽  
Author(s):  
KATSUHIRO TAKEDA ◽  
KOUICHI KIRAIWA

Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2895-2900 ◽  
Author(s):  
Taei Matsui ◽  
Taketo Shimoyama ◽  
Masanori Matsumoto ◽  
Yoshihiro Fujimura ◽  
Yoshinobu Takemoto ◽  
...  

von Willebrand factor (vWF) is synthesized exclusively by endothelial cells and megakaryocytes, and stored in the intracellular granules or constitutively secreted into plasma. ABO blood group antigens are covalently associated with asparagine-linked sugar chains of plasma vWF. The effect of ABO-mismatched bone marrow transplantation (BMT) or blood stem cell transplantation (BSCT) on the expression of ABO blood group antigens on the vWF was examined to obtain information on the origin of these antigens. In ABO-mismatched (HLA-matched) groups, 8 cases of BMT and 4 cases of BSCT were examined. In all cases, the ABO blood groups on red blood cells were gradually converted to the donor’s type within 80 to 90 days after the transplantation. The blood group antigens on the vWF were consistent with the recipient’s blood group for the period monitored by enzyme-linked immunosorbent assay (ELISA). When vWF was isolated from normal platelets and examined for the blood group antigens using ELISA or immunoblotting, it showed few antigens. However, vWF extracted from veins expressed blood group antigens. These findings indicate that platelet (megakaryocyte)-derived vWF does not contain blood group antigens and that these antigens may be specifically associated with vWF synthesized in endothelial cells and secreted into plasma. Furthermore, it is possible that the persistence of the recipient’s blood group antigens on plasma glycoproteins such as vWF, independent of the donor-derived erythrocytes, after ABO-mismatched stem cell transplantation, may influence the immunological system in the production of anti-blood group antibodies resulting in the establishment of immunological tolerance in the recipient plasma.


2011 ◽  
Vol 106 (8) ◽  
pp. 936-941 ◽  
Author(s):  
Délia Cristina Figueira Aguiar ◽  
Vera Lúcia de Souza Barros ◽  
Washington Luiz Assunção Pereira ◽  
Rosane do Socorro Pompeu de Loiola ◽  
Gyselly Cássia Bastos de Matos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document