Efficient application of next-generation sequencing for the diagnosis of rare genetic syndromes

2014 ◽  
Vol 67 (12) ◽  
pp. 1099-1103 ◽  
Author(s):  
Irene Madrigal ◽  
Maria Isabel Alvarez-Mora ◽  
Olof Karlberg ◽  
Laia Rodríguez-Revenga ◽  
Dei M Elurbe ◽  
...  

AimsThe causes of intellectual disability, which affects 1%–3% of the general population, are highly heterogeneous and the genetic defect remains unknown in around 40% of patients. The application of next-generation sequencing is changing the nature of biomedical diagnosis. This technology has quickly become the method of choice for searching for pathogenic mutations in rare uncharacterised genetic diseases.MethodsWhole-exome sequencing was applied to a series of families affected with intellectual disability in order to identify variants underlying disease phenotypes.ResultsWe present data of three families in which we identified the disease-causing mutations and which benefited from receiving a clinical diagnosis: Cornelia de Lange, Cohen syndrome and Dent-2 disease. The genetic heterogeneity and the variability in clinical presentation of these disorders could explain why these patients are difficult to diagnose.ConclusionsThe accessibility to next-generation sequencing allows clinicians to save much time and cost in identifying the aetiology of rare diseases. The presented cases are excellent examples that demonstrate the efficacy of next-generation sequencing in rare disease diagnosis.

2016 ◽  
Vol 54 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Francisco Martínez ◽  
Alfonso Caro-Llopis ◽  
Mónica Roselló ◽  
Silvestre Oltra ◽  
Sonia Mayo ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Nekane Ibarluzea ◽  
Ana Belén de la Hoz ◽  
Olatz Villate ◽  
Isabel Llano ◽  
Intzane Ocio ◽  
...  

X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID. Over the past decade, next-generation sequencing has clearly stimulated the gene discovery process and has become part of the diagnostic procedure. We have performed targeted next-generation sequencing of 82 XLID genes on 61 non-related male patients with suggestive non-syndromic XLID. These patients were initially referred to the molecular genetics laboratory to exclude Fragile X Syndrome. The cohort includes 47 male patients with suggestive X-linked family history of ID meaning that they had half-brothers or maternal cousins or uncles affected; and 14 male patients with ID and affected brothers whose mothers show skewed X-inactivation. Sequencing data analysis identified 17 candidate variants in 16 patients. Seven families could be re-contacted and variant segregation analysis of the respective eight candidate variants was performed: HUWE1, IQSEC2, MAOA, MED12, PHF8, SLC6A8, SLC9A6, and SYN1. Our results show the utility of targeted next-generation sequencing in unravelling the genetic origin of XLID, especially in retrospective cases. Variant segregation and additional studies like RNA sequencing and biochemical assays also helped in re-evaluating and further classifying the genetic variants found.


Author(s):  
Yinan Yang ◽  
Xiaobin Hu ◽  
Li Min ◽  
Xiangyu Dong ◽  
Yuanlin Guan

Abstract Background Encephalitis is caused by infection, immune mediated diseases, or primary inflammatory diseases. Of all the causative infectious pathogens, 90% are viruses or bacteria. Granulomatous amoebic encephalitis (GAE), caused by Balamuthia mandrillaris, is a rare but life-threatening disease. Diagnosis and therapy are frequently delayed due to the lack of specific clinical manifestations. Method A healthy 2 year old Chinese male patient initially presented with a nearly 2 month history of irregular fever. We present this case of granulomatous amoebic encephalitis caused by B. mandrillaris. Next generation sequencing of the patient’s cerebrospinal fluid (CSF) was performed to identify an infectious agent. Result The results of next generation sequencing of the CSF showed that most of the mapped reads belonged to Balamuthia mandrillaris. Conclusion Next generation sequencing (NGS) is an unbiased and rapid diagnostic tool. The NGS method can be used for the rapid identification of causative pathogens. The NGS method should be widely applied in clinical practice and help clinicians provide direction for the diagnosis of diseases, especially for rare and difficult cases.


2017 ◽  
Vol 21 (5) ◽  
pp. 295-303 ◽  
Author(s):  
Babylakshmi Muthusamy ◽  
Lakshmi Dhevi N. Selvan ◽  
Thong T. Nguyen ◽  
Jesna Manoj ◽  
Eric W. Stawiski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document