next generation sequencing ngs
Recently Published Documents





2022 ◽  
Vol 20 (1) ◽  
Kamran Hosseini ◽  
Maryam Ranjbar ◽  
Abbas Pirpour Tazehkand ◽  
Parina Asgharian ◽  
Soheila Montazersaheb ◽  

AbstractClinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers’ diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 153
László Madar ◽  
Lilla Juhász ◽  
Zsuzsanna Szűcs ◽  
Lóránt Kerkovits ◽  
Mariann Harangi ◽  

Familial hypercholesterolemia (FH) is one of the most common autosomal, dominantly inherited diseases affecting cholesterol metabolism, which, in the absence of treatment, leads to the development of cardiovascular complications. The disease is still underdiagnosed, even though an early diagnosis would be of great importance for the patient to receive proper treatment and to prevent further complications. No studies are available describing the genetic background of Hungarian FH patients. In this work, we present the clinical and molecular data of 44 unrelated individuals with suspected FH. Sequencing of five FH-causing genes (LDLR, APOB, PCSK9, LDLRAP1 and STAP1) has been performed by next-generation sequencing (NGS). In cases where a copy number variation (CNV) has been detected by NGS, confirmation by multiplex ligation-dependent probe amplification (MLPA) has also been performed. We identified 47 causal or potentially causal (including variants of uncertain significance) LDLR and APOB variants in 44 index patients. The most common variant in the APOB gene was the c.10580G>A p.(Arg3527Gln) missense alteration, this being in accordance with literature data. Several missense variants in the LDLR gene were detected in more than one index patient. LDLR variants in the Hungarian population largely overlap with variants detected in neighboring countries.

BioTech ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 1
Savanah Senn ◽  
Kelly Pangell ◽  
Adrianna L. Bowerman

The purpose of this paper is to elucidate the roles that microbes may be playing in the rootzone of the medicinal plant Daturainoxia. We hypothesized that the microbes associated with the Datura rootzone would be significantly different than the similar surrounding fields in composition and function. We also hypothesized that rhizospheric and endophytic microbes would be associated with similar metabolic functions to the plant rootzone they inhabited. The methods employed were microbial barcoding, tests of essential oils against antibiotic resistant bacteria and other soil bacterial isolates, 16S Next Generation Sequencing (NGS) metabarcoding, and Whole Genome Shotgun (WGS) taxonomic and functional analyses. A few of the main bacterial genera of interest that were differentially abundant in the Datura root microbiome were Flavobacterium (p = 0.007), Chitinophaga (p = 0.0007), Pedobacter (p = 6 × 10−5), Bradyhizobium (p = 1 × 10−8), and Paenibacillus (p = 1.46 × 10−6). There was significant evidence that the microbes associated with the Datura rootzone had elevated function related to bacterial chalcone synthase (p = 1.49 × 10−3) and permease genes (p < 0.003). There was some evidence that microbial functions in the Datura rootzone provided precursors to important plant bioactive molecules or were beneficial to plant growth. This is important because these compounds are phyto-protective antioxidants and are precursors to many aromatic bioactive compounds that are relevant to human health. In the context of known interactions, and current results, plants and microbes influence the flavonoid biosynthetic pathways of one other, in terms of the regulation of the phenylpropanoid pathway. This is the first study to focus on the microbial ecology of the Datura rootzone. There are possible biopharmaceutical and agricultural applications of the natural interplay that was discovered during this study of the Datura inoxia rhizosphere.

Xue Li Tan ◽  
Wei Yee Wee ◽  
Boon Chin Tan ◽  
Chee How Teo

Proper identification of strain is essential in understanding the ecology of a bacteria species. The classification of Pseudomonas nitroreducens is still being questioned and revised until now. The novel P. nitroreducens strains FY43 and FY47 used in this study have been reported to show a high level of tolerance to glyphosate. In this study, next-generation sequencing (NGS) and whole genome analysis were used to clarify the delineation of the species. Whole genome analysis showed that P. nitroreducens strains FY43 and FY47 shared high homology to five reference genomes of P. nitroreducens: strain B, Aramco J, NBRC 12694, DF05, and TX01. Phylogenomic and phylogenetic analysis (average nucleotide identity based on BLAST (ANIb), genome-to-genome distance (GGDC) analysis) showed that both P. nitroreducens strains FY43 and FY47 are Pseudomonas nitroreducens members. However, strains DF05 and TX01 were not correctly assigned at the species level for all the analyses. The P. nitroreducens strain DF05 and TX01 should be further investigated for their classification as the correct species classification is the prerequisite for future diversity studies.

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 143
Alison Tedcastle ◽  
Thomas Wilton ◽  
Elaine Pegg ◽  
Dimitra Klapsa ◽  
Erika Bujaki ◽  

Infection with enterovirus D68 (EV-D68) has been linked with severe neurological disease such as acute flaccid myelitis (AFM) in recent years. However, active surveillance for EV-D68 is lacking, which makes full assessment of this association difficult. Although a high number of EV-D68 infections were expected in 2020 based on the EV-D68′s known biannual circulation patterns, no apparent increase in EV-D68 detections or AFM cases was observed during 2020. We describe an upsurge of EV-D68 detections in wastewater samples from the United Kingdom between July and November 2021 mirroring the recently reported rise in EV-D68 detections in clinical samples from various European countries. We provide the first publicly available 2021 EV-D68 sequences showing co-circulation of EV-D68 strains from genetic clade D and sub-clade B3 as in previous years. Our results show the value of environmental surveillance (ES) for the early detection of circulating and clinically relevant human viruses. The use of a next-generation sequencing (NGS) approach helped us to estimate the prevalence of EV-D68 viruses among EV strains from other EV serotypes and to detect EV-D68 minor variants. The utility of ES at reducing gaps in virus surveillance for EV-D68 and the possible impact of nonpharmaceutical interventions introduced to control the COVID-19 pandemic on EV-D68 transmission dynamics are discussed.

2022 ◽  
Vol 8 ◽  
Wei Wu ◽  
Yu Liu ◽  
Yuzhi Jin ◽  
Lulu Liu ◽  
Yixuan Guo ◽  

Pancreatic cancer is one of the most leading causes of cancer death worldwide. The rapid development of next-generation sequencing (NGS) and precision medicine promote us to seek potential targets for the treatment of pancreatic cancer. Here, we report a female pancreatic cancer patient who underwent radical surgical excision after neoadjuvant chemotherapy. After the surgery, the patient underwent gemcitabine + S-1 therapy, capecitabine + albumin paclitaxel therapy and irinotecan therapy successively, however, MRI review revealed tumor progression. The surgical tissue sample was subjected to next-generation sequencing (NGS), and PALB2 germline mutation and KRAS somatic mutation were identified. The patient then received olaparib (a PARP inhibitor) + irinotecan and the disease stabilized for one year. Due to the increased CA19-9, treatment of the patient with a combination of trametinib (a MEK inhibitor) and hydroxychloroquine resulted in stable disease (SD) with a significant decrease of CA19-9. This case demonstrated that the NGS may be a reliable method for finding potential therapeutic targets for pancreatic cancer.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 397
Ilias P. Nikas ◽  
Giannis Mountzios ◽  
Guy I. Sydney ◽  
Kalliopi J. Ioakim ◽  
Jae-Kyung Won ◽  

Pancreatic cancer and cholangiocarcinoma are lethal diseases mainly diagnosed at an inoperable stage. As pancreatobiliary surgical specimens are often unavailable for further molecular testing, this review aimed to highlight the diagnostic, prognostic, and therapeutic impact of next-generation sequencing (NGS) performed on distinct small biopsies, including endoscopic ultrasound fine-needle aspirations and biopsies of pancreatic solid and cystic lesions, biliary duct brushings, and also “liquid biopsies” such as the pancreatic juice, bile, and blood. NGS could clarify indeterminate pancreatic lesions or biliary strictures, for instance by identifying TP53 or SMAD4 mutations indicating high-grade dysplasia or cancer. It could also stratify pancreatic cystic lesions, by distinguishing mucinous from non-mucinous cysts and identifying high-risk cysts that should be excised in surgically fit patients, whereas the combination of cytology, elevated cystic CEA levels and NGS could improve the overall diagnostic accuracy. When NGS is performed on the pancreatic juice, it could stratify high-risk patients under surveillance. On the plasma, it could dynamically monitor the disease course and response to therapy. Notably, the circulating tumor DNA (ctDNA) levels have been associated with staging, grading, and survival. Lastly, NGS has shown potential in identifying potentially actionable molecular alterations. In conclusion, NGS applied on small biopsies could carry significant diagnostic, prognostic, and therapeutic value.

2022 ◽  
Vol 12 (1) ◽  
Shin-ya Nishio ◽  
Shin-ichi Usami

AbstractThe STRC gene, located on chromosome 15q15.3, is one of the genetic causes of autosomal recessive mild-to-moderate sensorineural hearing loss. One of the unique characteristics of STRC-associated hearing loss is the high prevalence of long deletions or copy number variations observed on chromosome 15q15.3. Further, the deletion of chromosome 15q15.3 from STRC to CATSPER2 is also known to be a genetic cause of deafness infertility syndrome (DIS), which is associated with not only hearing loss but also male infertility, as CATSPER2 plays crucial roles in sperm motility. Thus, information regarding the deletion range for each patient is important to the provision of appropriate genetic counselling for hearing loss and male infertility. In the present study, we performed next-generation sequencing (NGS) analysis for 9956 Japanese hearing loss patients and analyzed copy number variations in the STRC gene based on NGS read depth data. In addition, we performed Multiplex Ligation-dependent Probe Amplification analysis to determine the deletion range including the PPIP5K1, CKMT1B, STRC and CATSPER2 genomic region to estimate the prevalence of the STRC-CATSPER deletion, which is causative for DIS among the STRC-associated hearing loss patients. As a result, we identified 276 cases with STRC-associated hearing loss. The prevalence of STRC-associated hearing loss in Japanese hearing loss patients was 2.77% (276/9956). In addition, 77.1% of cases with STRC homozygous deletions carried a two copy loss of the entire CKMT1B-STRC-CATSPER2 gene region. This information will be useful for the provision of more appropriate genetic counselling regarding hearing loss and male infertility for the patients with a STRC deletion.

2022 ◽  
Jianchao Zheng ◽  
Zhilong Li ◽  
Xiuqing Zhang ◽  
Hongyun Zhang ◽  
Shida Zhu ◽  

Cell-free DNA (cfDNA) profiling by deep sequencing (i.e., by next generation sequencing (NGS)) has wide applications in cancer diagnosis, prognosis, and therapy response monitoring. One key step of cfDNA deep sequencing workflow is NGS library construction, whose efficiency significantly affects the utilization efficiency of cfDNA molecules, and eventually determines effective sequencing depth and sequencing accuracy. In this study, we compared two different types of cfDNA library construction methods, namely double-stranded library (dsLib, the conventional method which captures dsDNA molecules) and single-stranded library (ssLib) preparation, which captures ssDNA molecules, for the applications of mutation detection and methylation profiling, respectively. Our results suggest that the dsLib method was suitable for mutation detection while the ssLib method proved more efficient for methylation analysis. Our findings could help researchers choose the more appropriate library construction method for corresponding downstream applications of cfDNA sequencing.

2022 ◽  
Maura Fiona Judge ◽  
Adrienn Gréta Tóth ◽  
Sára Ágnes Nagy ◽  
Márton Papp ◽  
Norbert Solymosi

Antimicrobial resistance (AMR) is one of the foremost threats facing the treatment of infectious diseases worldwide. Recent studies have highlighted the potential for ntimicrobial resistance genes (ARGs) in fermented foods to contribute to AMR via horizontal gene transfer (HGT). The focus of our study was investigating the ARG content (resistome) and mobility potential of the ARGs (mobilome) of bacterial strains commonly used in probiotic products, namely yoghurt and kefir. We performed metagenomic analyses on freely available data sets (n=584) originating from various kefir and yoghurt strains using next generation sequencing (NGS) in order to gain an insight into the ARG diversity, frequency and mobility. Our study shows that kefir and yoghurt products carry diverse and significant amounts of ARGs and that these genes may often be associated with iMGEs or plasmids, conferring mobility. Certain bacteria species such as Bifidobacterium animalis and Streptococcus thermophilus were found to have higher ARG content. Overall, our results support the hypothesis that ARGs are present in fermented foods, namely yoghurt and kefir, and have the potential to contribute to AMR.

Sign in / Sign up

Export Citation Format

Share Document