Rogers’ Linearization Formula for the Continuous q-Ultraspherical Polynomials and Quadratic Transformation Formulas

1985 ◽  
Vol 16 (5) ◽  
pp. 1061-1071 ◽  
Author(s):  
George Gasper
Author(s):  
Victor J. W. Guo ◽  
Michael J. Schlosser

AbstractSeveral new q-supercongruences are obtained using transformation formulas for basic hypergeometric series, together with various techniques such as suitably combining terms, and creative microscoping, a method recently developed by the first author in collaboration with Zudilin. More concretely, the results in this paper include q-analogues of supercongruences (referring to p-adic identities remaining valid for some higher power of p) established by Long, by Long and Ramakrishna, and several other q-supercongruences. The six basic hypergeometric transformation formulas which are made use of are Watson’s transformation, a quadratic transformation of Rahman, a cubic transformation of Gasper and Rahman, a quartic transformation of Gasper and Rahman, a double series transformation of Ismail, Rahman and Suslov, and a new transformation formula for a nonterminating very-well-poised $${}_{12}\phi _{11}$$ 12 ϕ 11 series. Also, the nonterminating q-Dixon summation formula is used. A special case of the new $${}_{12}\phi _{11}$$ 12 ϕ 11 transformation formula is further utilized to obtain a generalization of Rogers’ linearization formula for the continuous q-ultraspherical polynomials.


Author(s):  
Tom H. Koornwinder

AbstractWe settle the dual addition formula for continuous q-ultraspherical polynomials as an expansion in terms of special q-Racah polynomials for which the constant term is given by the linearization formula for the continuous q-ultraspherical polynomials. In a second proof we derive the dual addition formula from the Rahman–Verma addition formula for these polynomials by using the self-duality of the polynomials. We also consider the limit case of continuous q-Hermite polynomials.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Afnan Ali

The main purpose of the current article is to develop new specific and general linearization formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas is based on reducing the linearization coefficients which are represented in terms of the Kampé de Fériet function for some particular choices of the involved parameters. In some cases, the required reduction is performed with the aid of some standard reduction formulas for certain hypergeometric functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas, so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger, Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and third-and fourth-kinds Chebyshev polynomials are established.


2020 ◽  
Vol 102 (1) ◽  
pp. 39-49
Author(s):  
ZHI-HONG SUN

Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.


Analysis ◽  
1998 ◽  
Vol 18 (4) ◽  
pp. 313-332 ◽  
Author(s):  
Gavin Brown ◽  
Stamatis Koumandos ◽  
Kun-Yang Wang

Sign in / Sign up

Export Citation Format

Share Document