Chapter 2: Tools from the Geometry of Numbers and Integer Optimization

Author(s):  
Christodoulos A. Floudas

Filling a void in chemical engineering and optimization literature, this book presents the theory and methods for nonlinear and mixed-integer optimization, and their applications in the important area of process synthesis. Other topics include modeling issues in process synthesis, and optimization-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems. The basics of convex analysis and nonlinear optimization are also covered and the elementary concepts of mixed-integer linear optimization are introduced. All chapters have several illustrations and geometrical interpretations of the material as well as suggested problems. Nonlinear and Mixed-Integer Optimization will prove to be an invaluable source--either as a textbook or a reference--for researchers and graduate students interested in continuous and discrete nonlinear optimization issues in engineering design, process synthesis, process operations, applied mathematics, operations research, industrial management, and systems engineering.


TECHNOLOGY ◽  
2018 ◽  
Vol 06 (02) ◽  
pp. 49-58
Author(s):  
Iman Dayarian ◽  
Timothy C.Y. Chan ◽  
David Jaffray ◽  
Teo Stanescu

Magnetic resonance imaging (MRI) is a powerful diagnostic tool that has become the imaging modality of choice for soft-tissue visualization in radiation therapy. Emerging technologies aim to integrate MRI with a medical linear accelerator to form novel cancer therapy systems (MR-linac), but the design of these systems to date relies on heuristic procedures. This paper develops an exact, optimization-based approach for magnet design that 1) incorporates the most accurate physics calculations to date, 2) determines precisely the relative spatial location, size, and current magnitude of the magnetic coils, 3) guarantees field homogeneity inside the imaging volume, 4) produces configurations that satisfy, for the first time, small-footprint feasibility constraints required for MR-linacs. Our approach leverages modern mixed-integer programming (MIP), enabling significant flexibility in magnet design generation, e.g., controlling the number of coils and enforcing symmetry between magnet poles. Our numerical results demonstrate the superiority of our method versus current mainstream methods.


2012 ◽  
Vol 40 (3) ◽  
pp. 165-171
Author(s):  
Utz-Uwe Haus ◽  
Frank Pfeuffer

Nature ◽  
1947 ◽  
Vol 159 (4029) ◽  
pp. 104-105 ◽  
Keyword(s):  

2006 ◽  
Vol 24 (8) ◽  
pp. 1502-1513 ◽  
Author(s):  
A. Elwalid ◽  
D. Mitra ◽  
Qiong Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document