Riemannian Newton Method for the Multivariate Eigenvalue Problem

2010 ◽  
Vol 31 (5) ◽  
pp. 2972-2996 ◽  
Author(s):  
Lei-Hong Zhang
1997 ◽  
Vol 31 (3) ◽  
pp. 36
Author(s):  
Michio Sakakihara ◽  
Shigekazu Nakagawa

2019 ◽  
Vol 24 (1) ◽  
pp. 9
Author(s):  
Amanda Carreño ◽  
Luca Bergamaschi ◽  
Angeles Martinez ◽  
Antoni Vidal-Ferrándiz ◽  
Damian Ginestar ◽  
...  

In nuclear engineering, the λ -modes associated with the neutron diffusion equation are applied to study the criticality of reactors and to develop modal methods for the transient analysis. The differential eigenvalue problem that needs to be solved is discretized using a finite element method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a block generalized Newton method implemented with a matrix-free technique that does not store all matrices explicitly. This technique reduces mainly the computational memory and, in some cases, when the assembly of the matrices is an expensive task, the computational time. The main problem is that the block Newton method requires solving linear systems, which need to be preconditioned. The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not efficient in terms of the memory with the matrix-free implementation. As an alternative, several block preconditioners are studied that only save a few block matrices in comparison with the full problem. To test the performance of these methodologies, different reactor problems are studied.


Sign in / Sign up

Export Citation Format

Share Document