scholarly journals On Covariant Derivatives and Their Applications to Image Regularization

2014 ◽  
Vol 7 (4) ◽  
pp. 2393-2422 ◽  
Author(s):  
Thomas Batard ◽  
Marcelo Bertalmío
Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4865-4873 ◽  
Author(s):  
Milos Petrovic

Generalized m-parabolic K?hler manifolds are defined and holomorphically projective mappings between such manifolds have been considered. Two non-linear systems of PDE?s in covariant derivatives of the first and second kind for the existence of such mappings are given. Also, relations between five linearly independent curvature tensors of generalized m-parabolic K?hler manifolds with respect to these mappings are examined.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


2018 ◽  
Vol 22 ◽  
pp. 19-34 ◽  
Author(s):  
Nigel J. Newton

We develop a family of infinite-dimensional (non-parametric) manifolds of probability measures. The latter are defined on underlying Banach spaces, and have densities of class Cbk with respect to appropriate reference measures. The case k = ∞, in which the manifolds are modelled on Fréchet spaces, is included. The manifolds admit the Fisher-Rao metric and, unusually for the non-parametric setting, Amari’s α-covariant derivatives for all α ∈ ℝ. By construction, they are C∞-embedded submanifolds of particular manifolds of finite measures. The statistical manifolds are dually (α = ±1) flat, and admit mixture and exponential representations as charts. Their curvatures with respect to the α-covariant derivatives are derived. The likelihood function associated with a finite sample is a continuous function on each of the manifolds, and the α-divergences are of class C∞.


Filomat ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 1179-1184
Author(s):  
Ana Velimirovic ◽  
Milan Zlatanovic

Using the non-symmetry of a connection, it is possible to introduce four types of covariant derivatives. Based on these derivatives, several types of Ricci?s identities and twelve curvature tensors are obtained. Five of them are linearly independent but the other curvature tensors can be expressed as linear combinations of these five linearly independent curvature tensors and the curvature tensor of the corresponding associated symmetric space. The semisymmetric connection is defined and the properties of two of the five independent curvature tensors are analyzed. In the same manner, the properties for three others curvature tensors may be derived.


Author(s):  
Charles Fefferman ◽  
C. Robin Graham

This chapter studies conformal curvature tensors of a pseudo-Riemannian metric g. These are defined in terms of the covariant derivatives of the curvature tensor of an ambient metric in normal form relative to g. Their transformation laws under conformal change are given in terms of the action of a subgroup of the conformal group O(p + 1, q + 1) on tensors. It is assumed throughout this chapter that n ≥ 3.


2021 ◽  
Vol 62 ◽  
pp. 29-52
Author(s):  
Ying-Qiu Gu ◽  

In this note we construct explicit complex and real faithful matrix representations of the Clifford algebras $\Cl_{p,q}$. The representation is based on Pauli matrices and has an elegant structure similar to the fractal geometry. In the cases $p+q=4m$, the representation is unique in equivalent sense, and the $1+3$ dimensional space-time corresponds to the simplest and best case. Besides, the relation between the curvilinear coordinate frame and the local orthonormal basis in the curved space-time is discussed in detail, the covariant derivatives of the spinor and tensors are derived, and the connection of the orthogonal basis in tangent space is calculated. These results are helpful for both theoretical analysis and practical calculation. The basis matrices are the faithful representation of Clifford algebras in any $p+q$ dimensional Minkowski space-time or Riemann space, and the Clifford calculus converts the complicated relations in geometry and physics into simple and concise algebraic operations. Clifford numbers over any number field $\mathbb{F}$ expressed by this matrix basis form a well-defined $2^n$ dimensional hypercomplex number system. Therefore, we can expect that Clifford algebras will complete a large synthesis in science.


Sign in / Sign up

Export Citation Format

Share Document