scholarly journals On semisymmetric connection

Filomat ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 1179-1184
Author(s):  
Ana Velimirovic ◽  
Milan Zlatanovic

Using the non-symmetry of a connection, it is possible to introduce four types of covariant derivatives. Based on these derivatives, several types of Ricci?s identities and twelve curvature tensors are obtained. Five of them are linearly independent but the other curvature tensors can be expressed as linear combinations of these five linearly independent curvature tensors and the curvature tensor of the corresponding associated symmetric space. The semisymmetric connection is defined and the properties of two of the five independent curvature tensors are analyzed. In the same manner, the properties for three others curvature tensors may be derived.

Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4865-4873 ◽  
Author(s):  
Milos Petrovic

Generalized m-parabolic K?hler manifolds are defined and holomorphically projective mappings between such manifolds have been considered. Two non-linear systems of PDE?s in covariant derivatives of the first and second kind for the existence of such mappings are given. Also, relations between five linearly independent curvature tensors of generalized m-parabolic K?hler manifolds with respect to these mappings are examined.


Author(s):  
Charles Fefferman ◽  
C. Robin Graham

This chapter studies conformal curvature tensors of a pseudo-Riemannian metric g. These are defined in terms of the covariant derivatives of the curvature tensor of an ambient metric in normal form relative to g. Their transformation laws under conformal change are given in terms of the action of a subgroup of the conformal group O(p + 1, q + 1) on tensors. It is assumed throughout this chapter that n ≥ 3.


Filomat ◽  
2015 ◽  
Vol 29 (3) ◽  
pp. 573-584
Author(s):  
Mica Stankovic ◽  
Milan Zlatanovic ◽  
Nenad Vesic

Vanishing of linearly independent curvature tensors of a non-symmetric affine connection space as functions of vanished curvature tensor of the associated space of this one are analyzed in the first part of this paper. Projective curvature tensors of a non-symmetric affine connection space are expressed as functions of the affine connection coefficients and Weyl projective tensor of the corresponding associated affine connection space in the second part of this paper.


2008 ◽  
Vol 05 (07) ◽  
pp. 1109-1135 ◽  
Author(s):  
NABIL. L. YOUSSEF ◽  
A. M. SID-AHMED

In this paper, we study Absolute Parallelism (AP-) geometry on the tangent bundle TM of a manifold M. Accordingly, all geometric objects defined in this geometry are not only functions of the positional argument x, but also depend on the directional argument y. Moreover, many new geometric objects, which have no counterpart in the classical AP-geometry, emerge in this different framework. We refer to such a geometry as an Extended Absolute Parallelism (EAP-) geometry. The building blocks of the EAP-geometry are a nonlinear connection (assumed given a priori) and 2n linearly independent vector fields (of special form) defined globally on TM defining the parallelization. Four different d-connections are used to explore the properties of this geometry. Simple and compact formulae for the curvature tensors and the W-tensors of the four defined d-connections are obtained, expressed in terms of the torsion and the contortion tensors of the EAP-space. Further conditions are imposed on the canonical d-connection assuming that it is of Cartan type (resp. Berwald type). Important consequences of these assumptions are investigated. Finally, a special form of the canonical d-connection is studied under which the classical AP-geometry is recovered naturally from the EAP-geometry. Physical aspects of some of the geometric objects investigated are pointed out and possible physical implications of the EAP-space are discussed, including an outline of a generalized field theory on the tangent bundle TM of M.


Author(s):  
Stephan Gocht ◽  
Jakob Nordström ◽  
Amir Yehudayoff

The conflict-driven clause learning (CDCL) paradigm has revolutionized SAT solving over the last two decades. Extending this approach to pseudo-Boolean (PB) solvers doing 0-1 linear programming holds the promise of further exponential improvements in theory, but intriguingly such gains have not materialized in practice. Also intriguingly, most PB extensions of CDCL use not the division rule in cutting planes as defined in [Cook et al., '87] but instead the so-called saturation rule. To the best of our knowledge, there has been no study comparing the strengths of division and saturation in the context of conflict-driven PB learning, when all linear combinations of inequalities are required to cancel variables. We show that PB solvers with division instead of saturation can be exponentially stronger. In the other direction, we prove that simulating a single saturation step can require an exponential number of divisions. We also perform some experiments to see whether these phenomena can be observed in actual solvers. Our conclusion is that a careful combination of division and saturation seems to be crucial to harness more of the power of cutting planes.


1996 ◽  
Vol 143 ◽  
pp. 31-57
Author(s):  
Koji Tojo

Let (M, g) be a Kähler C-space. R and ∇ denote the curvature tensor and the Levi-Civita connection of (M, g), respectively.In [6], Takagi have proved that there exists an integer n such that


1982 ◽  
Vol 85 ◽  
pp. 213-221 ◽  
Author(s):  
Toyokazu Hiramatsu

Let Γ be a fuchsian group of the first kind not containing the element . We shall denote by d0 the number of linearly independent automorphic forms of weight 1 for Γ. It would be interesting to have a certain formula for d0. But, Hejhal said in his Lecture Notes 548, it is impossible to calculate d0 using only the basic algebraic properties of Γ. On the other hand, Serre has given such a formula of d0 recently in a paper delivered at the Durham symposium ([7]). His formula is closely connected with 2-dimensional Galois representations.


2017 ◽  
Vol 13 (02) ◽  
pp. 261-271 ◽  
Author(s):  
Csanád Bertók ◽  
Lajos Hajdu ◽  
István Pink ◽  
Zsolt Rábai

We give finiteness results concerning terms of linear recurrence sequences having a representation as a linear combination, with fixed coefficients, of powers of fixed primes. On one hand, under certain conditions, we give effective bounds for the terms of binary recurrence sequences with such a representation. On the other hand, in the case of some special binary recurrence sequences, all terms having a representation as sums of powers of [Formula: see text] and [Formula: see text] are explicitly determined.


1983 ◽  
Vol 91 ◽  
pp. 1-18 ◽  
Author(s):  
Ryoichi Takagi

A compact simply connected complex homogeneous manifold is said briefly a C-space, which was completely classified by H. C. Wang [12]. A C-space is called to be Kählerian if it admits a Kählerian metric such that a group of isometries acts transitively on it. Hermitian symmetric spaces of compact type are typical examples of a Kählerian C-space. Let M be an arbitrary Kählerian C-space and R its curvature tensor. M. Itoh [6] expressed R in the language of Lie algebra and investigated various properties of R. In this paper, we study higher covariant derivatives of R.


Author(s):  
M. S. P. Eastham

SynopsisA recently developed asymptotic theory of higher-order differential equations is applied to problems of right-definite type to determine the numbers M+, M− of linearly independent solutions with a convergent Dirichlet integral, M+ and M− referring to the usual upper and lower λ.-half-planes. Particular attention is given to the phenomenon noted by Karlsson in which one of M+ and M− is maximal but not the other. Conditions are given under which M+ (say) is maximal and M− is the same, one less, and two less.


Sign in / Sign up

Export Citation Format

Share Document