tensor fields
Recently Published Documents


TOTAL DOCUMENTS

694
(FIVE YEARS 99)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 60 (1) ◽  
pp. 23-29
Author(s):  
Pavel N. Klepikov ◽  
Evgeny D. Rodionov ◽  
Olesya P. Khromova

Semisymmetric connections were first discovered by E. Cartan and are a natural generalization of the Levi-Civita connection. The properties of the parallel transfer of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano and other mathematicians. In this paper, a mathematical model is constructed for studying semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional unimodular Lie groups with left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that in this case there are nontrivial invariant semisimetric connections. Previously, the authors carried out similar studies in the class of Einstein metrics.


2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Vladimir A. Sharafutdinov

A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative is equal to zero. Such a field determines the first integral of the geodesic flow which is a degree m homogeneous polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the metric is of the form ds^2= λ(z)|dz|^2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the function λ satisfies the equation R(∂/∂z(λ(c∆^-1λ_zz+a))= 0 with some complex constants a and c≠0. The latter equation is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and λ + λ_0 satisfy the equation for a real constant λ0, 0, then there exists a non-zero Killing vector field on the torus.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Siddharth Tiwary ◽  
Rainer Dick

AbstractAntisymmetric tensor fields are a compelling prediction of string theory. This makes them an interesting target for particle physics because antisymmetric tensors may couple to electromagnetic dipole moments, thus opening a possible discovery opportunity for string theory. The strongest constraints on electromagnetic dipole couplings would arise from couplings to electrons, where these couplings would contribute to Møller and Bhabha scattering. Previous measurements of Bhabha scattering constrain the couplings to $${\tilde{M}}_e m_C>7.1\times 10^4\,{\mathrm {GeV}}^2$$ M ~ e m C > 7.1 × 10 4 GeV 2 , where $$m_C$$ m C is the mass of the antisymmetric tensor field and $${\tilde{M}}_e$$ M ~ e is an effective mass scale appearing in the electromagnetic dipole coupling.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Y.T. Albert Law

Abstract We study the manifestly covariant and local 1-loop path integrals on Sd+1 for general massive, shift-symmetric and (partially) massless totally symmetric tensor fields of arbitrary spin s ≥ 0 in any dimensions d ≥ 2. After reviewing the cases of massless fields with spin s = 1, 2, we provide a detailed derivation for path integrals of massless fields of arbitrary integer spins s ≥ 1. Following the standard procedure of Wick-rotating the negative conformal modes, we find a higher spin analog of Polchinski’s phase for any integer spin s ≥ 2. The derivations for low-spin (s = 0, 1, 2) massive, shift-symmetric and partially massless fields are also carried out explicitly. Finally, we provide general prescriptions for general massive and shift-symmetric fields of arbitrary integer spins and partially massless fields of arbitrary integer spins and depths.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ilija Burić ◽  
Sylvain Lacroix ◽  
Jeremy Mann ◽  
Lorenzo Quintavalle ◽  
Volker Schomerus

Abstract It was recently shown that multi-point conformal blocks in higher dimensional conformal field theory can be considered as joint eigenfunctions for a system of commuting differential operators. The latter arise as Hamiltonians of a Gaudin integrable system. In this work we address the reduced fourth order differential operators that measure the choice of 3-point tensor structures for all vertices of 3- and 4-dimensional comb channel conformal blocks. These vertices come associated with a single cross ratio. Remarkably, we identify the vertex operators as Hamiltonians of a crystallographic elliptic Calogero-Moser-Sutherland model that was discovered originally by Etingof, Felder, Ma and Veselov. Our construction is based on a further development of the embedding space formalism for mixed-symmetry tensor fields. The results thereby also apply to comb channel vertices of 5- and 6-point functions in arbitrary dimension.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012041
Author(s):  
E Yu Derevtsov

Abstract The Helmholtz decomposition of a vector field on potential and solenoidal parts is much more natural from physical and geometric points of view then representations through the components of the vector in the Cartesian coordinate system of Euclidean space. The structure, representation through potentials and detailed decomposition for 2D symmetric m-tensor fields in a case of the Euclidean metric is known. For the Riemannian metrics similar results are known for vector fields. We investigate the properties of the solenoidal vector and 2-tensor two-dimensional fields given in the Riemannian domain with the conformal metric and establish the connections between the fields and metrics.


2021 ◽  
Author(s):  
O. Andersen ◽  
M. Kelley ◽  
V. Smith ◽  
S. Raziperchikolaee

Summary In this study, we demonstrate geomechanical modeling with fully automatic parameter calibration to estimate the full geomechanical stress fields of a prospective US CO2 storage site, based on sparse measurement data. The goal is to compute full stress tensor field estimates (principal stresses and orientations) that are maximally compatible with observations within the constraints of the model assumptions, thereby extending point-wise, incomplete partial stress measurement to a simulated full formation stress field, as well as a rough assessment of the associated error. We use the Perch site, located in Otsego Country, Michigan, as our case study. Input data consists of partial stress tensor information inferred from in-situ borehole tests, geophysical well logs and processing of seismic data. A static earth model of the site was developed, and geomechanical simulation functionality of the open-source MATLAB Reservoir Simulation Toolbox (MRST) used to model the stress field. Adjoint-based nonlinear optimization was used to adjust boundary conditions and material properties to calibrate simulated results to observations. Results were interpreted through a Bayesian framework. The focus of this article is to demonstrate how the fully automatic calibration procedure works and discuss the results obtained but does not attempt a detailed analysis of the stress field in the context of the proposed CO2 storage initiatives. Our work is part of a larger effort to non-invasively determine in-situ stresses in deep formations considered for CO2 storage. Guided by previously published research on geomechanical model calibration, our work presents a novel calibration approach supporting a potentially large number of linear or nonlinear calibration parameters, in order to produce results optimally agreeing with available measurements and thus extend partial point-wise estimates to full tensor fields compatible with the physics of the site.


Sign in / Sign up

Export Citation Format

Share Document