supersymmetric theories
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 29)

H-INDEX

61
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Abhijit Gadde

Abstract We discover a modular property of supersymmetric partition functions of supersymmetric theories with R-symmetry in four dimensions. This modular property is, in a sense, the generalization of the modular invariance of the supersymmetric partition function of two-dimensional supersymmetric theories on a torus i.e. of the elliptic genus. The partition functions in question are on manifolds homeomorphic to the ones obtained by gluing solid tori. Such gluing involves the choice of a large diffeomorphism of the boundary torus, along with the choice of a large gauge transformation for the background flavor symmetry connections, if present. Our modular property is a manifestation of the consistency of the gluing procedure. The modular property is used to rederive a supersymmetric Cardy formula for four dimensional gauge theories that has played a key role in computing the entropy of supersymmetric black holes. To be concrete, we work with four-dimensional $$ \mathcal{N} $$ N = 1 supersymmetric theories but we expect versions of our result to apply more widely to supersymmetric theories in other dimensions.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Jinbeom Bae ◽  
Sungjay Lee

The WZW models describe the dynamics of the edge modes of Chern-Simons theories in three dimensions. We explore the WZW models which can be mapped to supersymmetric theories via the generalized Jordan-Wigner transformation. Some of such models have supersymmetric Ramond vacua, but the others break the supersymmetry spontaneously. We also make a comment on recent proposals that the Read-Rezayi states at filling fraction \nu=1/2,~2/3ν=1/2,2/3 are able to support supersymmetry.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sergey Derkachov ◽  
Enrico Olivucci

Abstract In this paper we consider systems of quantum particles in the 4d Euclidean space which enjoy conformal symmetry. The algebraic relations for conformal-invariant combinations of positions and momenta are used to construct a solution of the Yang-Baxter equation in the unitary irreducibile representations of the principal series ∆ = 2 + iν for any left/right spins ℓ,$$ \dot{\ell} $$ ℓ ̇ of the particles. Such relations are interpreted in the language of Feynman diagrams as integral star-triangle identites between propagators of a conformal field theory. We prove the quantum integrability of a spin chain whose k-th site hosts a particle in the representation (∆k, ℓk,$$ \dot{\ell} $$ ℓ ̇ k) of the conformal group, realizing a spinning and inhomogeneous version of the quantum magnet used to describe the spectrum of the bi-scalar Fishnet theories [1]. For the special choice of particles in the scalar (1, 0, 0) and fermionic (3/2, 1, 0) representation the transfer matrices of the model are Bethe-Salpeter kernels for the double-scaling limit of specific two-point correlators in the γ-deformed $$ \mathcal{N} $$ N = 4 and $$ \mathcal{N} $$ N = 2 supersymmetric theories.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
D. S. Korneev ◽  
D. V. Plotnikov ◽  
K. V. Stepanyantz ◽  
N. A. Tereshina

Abstract We investigate the NSVZ relations for $$ \mathcal{N} $$ N = 1 supersymmetric gauge theories with multiple gauge couplings. As examples, we consider MSSM and the flipped SU(5) model, for which they easily reproduce the results for the two-loop β-functions. For $$ \mathcal{N} $$ N = 1 SQCD interacting with the Abelian gauge superfield we demonstrate that the NSVZ-like equation for the Adler D-function follows from the NSVZ relations. Also we derive all-loop equations describing how the NSVZ equations for theories with multiple gauge couplings change under finite renormalizations. They allow describing a continuous set of NSVZ schemes in which the exact NSVZ β-functions are valid for all gauge coupling constants. Very likely, this class includes the HD+MSL scheme, which is obtained if a theory is regularized by Higher covariant Derivatives and divergences are removed by Minimal Subtractions of Logarithms. That is why we also discuss how one can construct the higher derivative regularization for theories with multiple gauge couplings. Presumably, this regularization allows to derive the NSVZ equations for such theories in all loops. In this paper we make the first step of this derivation, namely, the NSVZ equations for theories with multiple gauge couplings are rewritten in a new form which relates the β-functions to the anomalous dimensions of the quantum gauge superfields, of the Faddeev-Popov ghosts, and of the matter superfields. The equivalence of this new form to the original NSVZ relations follows from the extension of the non-renormalization theorem for the triple gauge-ghost vertices, which is also derived in this paper.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Stephen Ebert ◽  
Hao-Yu Sun ◽  
Zhengdi Sun

Abstract We calculate the $$ \mathcal{S} $$ S -multiplets for two-dimensional Euclidean $$ \mathcal{N} $$ N = (0, 2) and $$ \mathcal{N} $$ N = (2, 2) superconformal field theories under the T$$ \overline{T} $$ T ¯ deformation at leading order of perturbation theory in the deformation coupling. Then, from these $$ \mathcal{N} $$ N = (0, 2) deformed multiplets, we calculate two- and three-point correlators. We show the $$ \mathcal{N} $$ N = (0, 2) chiral ring’s elements do not flow under the T$$ \overline{T} $$ T ¯ deformation. Specializing to integrable supersymmetric seed theories, such as $$ \mathcal{N} $$ N = (2, 2) Landau-Ginzburg models, we use the thermodynamic Bethe ansatz to study the S-matrices and ground state energies. From both an S-matrix perspective and Melzer’s folding prescription, we show that the deformed ground state energy obeys the inviscid Burgers’ equation. Finally, we show that several indices independent of D-term perturbations including the Witten index, Cecotti-Fendley-Intriligator-Vafa index and elliptic genus do not flow under the T$$ \overline{T} $$ T ¯ deformation.


2021 ◽  
pp. 103-128
Author(s):  
Tushar Menon

Supersymmetry (SUSY) is a proposed symmetry between bosons and fermions. The structure of the space of SUSY generators is such that the distinction between internal and spacetime symmetries is blurred. As a result, there are two viable candidates for the spacetime setting for a flat supersymmetric field theory—Minkowski spacetime and superspace, an extension of Minkowski spacetime to include (at least) four new dimensions, coordinatized by ‘supernumbers’, i.e. numbers with nontrivial commutation properties. This chapter argues for two theses: first, that one standard set of arguments, related to universality of symmetry behaviour, that motivate a particular choice of spacetime structure in familiar spacetime theories motivates the choice of superspace as the appropriate spacetime for SUSY field theories; and second, that the metaphysical utility of the concept of spacetime requires more than just the satisfaction of this universality condition; in supersymmetric theories, the spacetime concept is not as useful as in special relativity.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Florent Baume ◽  
José Calderón Infante

Abstract We study the Swampland Distance Conjecture for supersymmetric theories with AdS5 backgrounds and fixed radius through their $$ \mathcal{N} $$ N = 2 SCFT holographic duals. By the Maldacena-Zhiboedov theorem, around a large class of infinite-distance points there must exist a tower of exponentially massless higher-spin fields in the bulk, for which we find bounds on the decay rate in terms of the conformal data. We discuss the origin of this tower in the gravity side for type IIB compactification on S5 and its orbifolds, and comment about more general cases.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrew Beckett ◽  
José Figueroa-O’Farrill

Abstract We calculate the relevant Spencer cohomology of the minimal Poincaré superalgebra in 5 spacetime dimensions and use it to define Killing spinors via a connection on the spinor bundle of a 5-dimensional lorentzian spin manifold. We give a definition of bosonic backgrounds in terms of this data. By imposing constraints on the curvature of the spinor connection, we recover the field equations of minimal (ungauged) 5-dimensional supergravity, but also find a set of field equations for an $$ \mathfrak{sp} $$ sp (1)-valued one-form which we interpret as the bosonic data of a class of rigid supersymmetric theories on curved backgrounds. We define the Killing superalgebra of bosonic backgrounds and show that their existence is implied by the field equations. The maximally supersymmetric backgrounds are characterised and their Killing superalgebras are explicitly described as filtered deformations of the Poincaré superalgebra.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Gui-Jun Ding ◽  
Ferruccio Feruglio ◽  
Xiang-Gan Liu

We analyze CP symmetry in symplectic modular-invariant supersymmetric theories. We show that for genus g\ge 3g≥3 the definition of CP is unique, while two independent possibilities are allowed when g\le 2g≤2. We discuss the transformation properties of moduli, matter multiplets and modular forms in the Siegel upper half plane, as well as in invariant subspaces. We identify CP-conserving surfaces in the fundamental domain of moduli space. We make use of all these elements to build a CP and symplectic invariant model of lepton masses and mixing angles, where known data are well reproduced and observable phases are predicted in terms of a minimum number of parameters.


Sign in / Sign up

Export Citation Format

Share Document