Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort

2019 ◽  
Vol 44 (7) ◽  
pp. 759-764 ◽  
Author(s):  
Koichi Okita ◽  
Shingo Takada ◽  
Noriteru Morita ◽  
Masashige Takahashi ◽  
Kagami Hirabayashi ◽  
...  

Increases in muscle size and strength similar to those obtained with high resistance load can be achieved by combining lower loads with continuous blood flow restriction (BFR). However, high ratings for distress have been reported for continuous BFR. Therefore, we investigated the efficacy (metabolic stress) of BFR applied only during intervals in resistance exercise. Seven healthy men performed three 1-min sets of plantar flexion (30 reps/min) with 1-min rest intervals under 4 conditions: low-load resistance exercise (L, 20% 1-repetition maximum (1RM)) without BFR (L-noBFR), L with BFR during exercise sets (L-exBFR), L with BFR during rest intervals (L-intBFR), and L with continuous BFR during both exercise and rest intervals (L-conBFR). Based on the results of the first experiment, we performed additional protocols using a moderate load (M, 40% 1RM) with intermittent (exercise or rest intervals) BFR (M-exBFR and M-intBFR). Intramuscular metabolic stress, defined as decreases in phosphocreatine and intramuscular pH, was evaluated by 31P magnetic resonance spectroscopy. Rated perceived exertion (RPE) was also assessed. At the end of exercise, total decreases in phosphocreatine and intramuscular pH were similar among L-noBFR, L-intBFR, and L-exBFR and significantly less than those in L-conBFR (p < 0.05). In contrast, changes in these variables in M-intBFR but not in M-exBFR were similar to those in L-conBFR. Nevertheless, RPE was lower in M-intBFR than in both M-exBFR and L-conBFR (p < 0.05). The effect of intermittent BFR during exercise might be insufficient to induce metabolic stress when using a low load. However, effective metabolic stress for muscle adaptation could be obtained by moderate-load resistance exercise with BFR during intervals with less ischemic duration and discomfort.

2020 ◽  
Vol 318 (2) ◽  
pp. R284-R295 ◽  
Author(s):  
Christopher Pignanelli ◽  
Heather L. Petrick ◽  
Fatemeh Keyvani ◽  
George J. F. Heigenhauser ◽  
Joe Quadrilatero ◽  
...  

The application of blood flow restriction (BFR) during resistance exercise is increasingly recognized for its ability to improve rehabilitation and for its effectiveness in increasing muscle hypertrophy and strength among healthy populations. However, direct comparison of the skeletal muscle adaptations to low-load resistance exercise (LL-RE) and low-load BFR resistance exercise (LL-BFR) performed to task failure is lacking. Using a within-subject design, we examined whole muscle group and skeletal muscle adaptations to 6 wk of LL-RE and LL-BFR training to repetition failure. Muscle strength and size outcomes were similar for both types of training, despite ~33% lower total exercise volume (load × repetition) with LL-BFR than LL-RE (28,544 ± 1,771 vs. 18,949 ± 1,541 kg, P = 0.004). After training, only LL-BFR improved the average power output throughout the midportion of a voluntary muscle endurance task. Specifically, LL-BFR training sustained an 18% greater power output from baseline and resulted in a greater change from baseline than LL-RE (19 ± 3 vs. 3 ± 4 W, P = 0.008). This improvement occurred despite histological analysis revealing similar increases in capillary content of type I muscle fibers following LL-RE and LL-BFR training, which was primarily driven by increased capillary contacts (4.53 ± 0.23 before training vs. 5.33 ± 0.27 and 5.17 ± 0.25 after LL-RE and LL-BFR, respectively, both P < 0.05). Moreover, maximally supported mitochondrial respiratory capacity increased only in the LL-RE leg by 30% from baseline ( P = 0.006). Overall, low-load resistance training increased indexes of muscle oxidative capacity and strength, which were not further augmented with the application of BFR. However, performance on a muscle endurance test was improved following BFR training.


2013 ◽  
Vol 115 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Julie E. A. Hunt ◽  
Dermot Galea ◽  
Graham Tufft ◽  
Danny Bunce ◽  
Richard A. Ferguson

Distortion to hemodynamic and ischemic stimuli during blood flow restriction (BFR) exercise may influence regional vascular adaptation. We examined changes at the conduit, resistance, and capillary level in response to low load resistance exercise with BFR. Eleven males (22 ± 3 yr, 178 ± 4 cm, 78 ± 9 kg) completed 6 wk (3 days/wk) unilateral plantar flexion training with BFR at 30% 1 repetition maximum (1-RM). The contralateral leg acted as a nonexercised control (CON). Popliteal artery function [flow-mediated dilation, FMD%] and structure [maximal diameter] and resistance vessel structure [peak reactive hyperemia] were assessed using Doppler ultrasound before and at 2-wk intervals. Calf filtration capacity was assessed using venous occlusion plethysmography before and after training. BFR training elicited an early increase in peak reactive hyperemia (1,400 ± 278 vs. 1,716 ± 362 ml/min at 0 vs. 2 wk; t-test: P = 0.047), a transient improvement in popliteal FMD% (5.0 ± 2.1, 7.6 ± 2.9, 6.6 ± 2.1, 5.7 ± 1.6% at 0, 2, 4 and 6 wk, respectively; ANOVA: P = 0.002), and an increase in maximum diameter (6.06 ± 0.44 vs. 6.26 ± 0.39 mm at 0 vs. 6 wk; Bonferroni t-test: P = 0.048). Capillary filtration increased after 6 wk BFR training ( P = 0.043). No changes in the CON leg were observed. Adaptation occurred at all levels of the vascular tree in response to low load resistance exercise with BFR. Enhanced peak reactive hyperemia and transient improvement in popliteal artery function occurred before changes in artery structural capacity.


2018 ◽  
Vol 50 (5S) ◽  
pp. 289
Author(s):  
Matthew B. Jessee ◽  
Samuel L. Buckner ◽  
Kevin T. Mattocks ◽  
J Grant Mouser ◽  
Scott J. Dankel ◽  
...  

2018 ◽  
Vol 50 (5S) ◽  
pp. 180
Author(s):  
J Grant Mouser ◽  
Kevin T. Mattocks ◽  
Scott J. Dankel ◽  
Samuel L. Buckner ◽  
Matthew B. Jessee ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Gilberto Laurentino ◽  
Marcelo Aoki ◽  
Rodrigo Fernandes ◽  
Antonio Soares ◽  
Carlos Ugrinowitsch ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Richard A. Ferguson ◽  
Julie E. A. Hunt ◽  
Mark P. Lewis ◽  
Neil R. W. Martin ◽  
Darren J. Player ◽  
...  

Author(s):  
Charlie J. Davids ◽  
Tore C. Næss ◽  
Maria Moen ◽  
Kristoffer Toldnes Cumming ◽  
Oscar Horwath ◽  
...  

Blood flow restriction (BFR) with low-load resistance exercise (RE) is often used as a surrogate to traditional high-load RE to stimulate muscular adaptations, such as hypertrophy and strength. However, it is not clear whether such adaptations are achieved through similar cellular and molecular processes. We compared changes in muscle function, morphology and signaling pathways between these differing training protocols. Twenty-one males and females (mean ± SD: 24.3 ± 3.1 years) experienced with resistance training (4.9 ± 2.6 years) performed nine weeks of resistance training (three times per week) with either high-loads (75-80% 1RM; HL-RT), or low-loads with BFR (30-40% 1RM; LL-BFR). Before and after the training intervention, resting muscle biopsies were collected, and quadricep cross-sectional area (CSA), muscular strength and power were measured. Approximately 5 days following the intervention, the same individuals performed an additional 'acute' exercise session under the same conditions, and serial muscle biopsies were collected to assess hypertrophic- and ribosomal-based signaling stimuli. Quadricep CSA increased with both LL-BFR (7.4±4.3%) and HL-RT (4.6±2.9%), with no significant differences between training groups (p=0.37). Muscular strength also increased in both training groups, but with superior gains in squat 1RM occurring with HL-RT (p<0.01). Acute phosphorylation of several key proteins involved in hypertrophy signaling pathways, and expression of ribosomal RNA transcription factors occurred to a similar degree with LL-BFR and HL-RT (all p>0.05 for between-group comparisons). Together, these findings validate low-load resistance training with continuous BFR as an effective alternative to traditional high-load resistance training for increasing muscle hypertrophy in trained individuals.


Sign in / Sign up

Export Citation Format

Share Document