muscle adaptations
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 44)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
Tatsuro Egawa ◽  
Takeshi Ogawa ◽  
Takumi Yokokawa ◽  
Kohei Kido ◽  
Katsumasa Goto ◽  
...  

Endurance exercise triggers skeletal muscle adaptations, including enhanced insulin signaling, glucose metabolism, and mitochondrial biogenesis. However, exercise-induced skeletal muscle adaptations may not occur in some cases, a condition known as exercise-resistance. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite and has detrimental effects on the body such as causing diabetic complications, mitochondrial dysfunction, and inflammation. This study aimed to clarify the effect of methylglyoxal on skeletal muscle molecular adaptations following endurance exercise. Mice were randomly divided into 4 groups (n = 12 per group): sedentary control group, voluntary exercise group, MG-treated group, and MG-treated with voluntary exercise group. Mice in the voluntary exercise group were housed in a cage with a running wheel, while mice in the MG-treated groups received drinking water containing 1% MG. Four weeks of voluntary exercise induced several molecular adaptations in the plantaris muscle, including increased expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), mitochondria complex proteins, toll-like receptor 4 (TLR4), 72-kDa heat shock protein (HSP72), hexokinase II, and glyoxalase 1; this also enhanced insulin-stimulated Akt Ser473 phosphorylation and citrate synthase activity. However, these adaptations were suppressed with MG treatment. In the soleus muscle, the exercise-induced increases in the expression of TLR4, HSP72, and advanced glycation end products receptor 1 were inhibited with MG treatment. These findings suggest that MG is a factor that inhibits endurance exercise-induced molecular responses including mitochondrial adaptations, insulin signaling activation, and the upregulation of several proteins related to mitochondrial biogenesis, glucose handling, and glycation in primarily fast-twitch skeletal muscle.


2021 ◽  
Vol 3 ◽  
Author(s):  
Stephan van der Zwaard ◽  
Tommie F. P. Koppens ◽  
Guido Weide ◽  
Koen Levels ◽  
Mathijs J. Hofmijster ◽  
...  

Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 684-685
Author(s):  
Yori Endo ◽  
Mehran Karvar ◽  
Yuteng Zhang ◽  
Shayan Olumi ◽  
Indranil Sinha

Abstract To assess the differential effects of exercise with age, Young (Y, 10-12 weeks) and Old (O, 23-25 months) mice were subjected to regimented treadmill running or no regimented exercise. Y, trained mice experienced a significant increase in maximal distance running, maximal speed of running, and lean muscle mass in comparison to age-matched, untrained controls. O mice did not improve significantly in any of these measures following training. Transcriptome analysis of gastrocnemius from Y mice demonstrated differential regulation of 120 genes with exercise. None of these genes were similarly regulated in the O group. Genes most upregulated following exercise in Y mice were direct targets of the hypoxia signaling pathway. Immunoblotting demonstrated that aryl hydrocarbon receptor nuclear translocator (ARNT), a critical regulator of hypoxia signaling, increased 3-fold with exercise in Y mice, but this increase was absent in O mice following exercise. To assess whether this loss of ARNT in O muscle impaired the exercise response, we generated a mouse with inducible, skeletal muscle-specific knockout of ARNT (ARNT muscle (m) KO). Following regimented exercise, ARNT mKO mice did not improve maximal distance running, maximal running speed, or lean muscle mass in comparison to untrained ARNT mKO mice. Littermate, age-matched ARNT wild type mice increased significantly in all of these measures following training. Administration of ML228, an ARNT agonist, increased maximal running distance and speed in response to exercise training in O mice. These results suggest that restoration of ARNT and hypoxia signaling may restore the physiologic response to exercise in aging.


2021 ◽  
Vol 12 ◽  
Author(s):  
S. Kyle Travis ◽  
Kevin A. Zwetsloot ◽  
Iñigo Mujika ◽  
Michael H. Stone ◽  
Caleb D. Bazyler

Before major athletic events, a taper is often prescribed to facilitate recovery and enhance performance. However, it is unknown which taper model is most effective for peaking maximal strength and positively augmenting skeletal muscle. Thus, the purpose of this study was to compare performance outcomes and skeletal muscle adaptations following a step vs. an exponential taper in strength athletes. Sixteen powerlifters (24.0 ± 4.0 years, 174.4 ± 8.2 cm, 89.8 ± 21.4 kg) participated in a 6-week training program aimed at peaking maximal strength on back squat [initial 1-repetition-maximum (1RM): 174.7 ± 33.4 kg], bench press (118.5 ± 29.9 kg), and deadlift (189.9 ± 41.2 kg). Powerlifters were matched based on relative maximal strength, and randomly assigned to either (a) 1-week overreach and 1-week step taper or (b) 1-week overreach and 3-week exponential taper. Athletes were tested pre- and post-training on measures of body composition, jumping performance, isometric squat, and 1RM. Whole muscle size was assessed at the proximal, middle, and distal vastus lateralis using ultrasonography and microbiopsies at the middle vastus lateralis site. Muscle samples (n = 15) were analyzed for fiber size, fiber type [myosin-heavy chain (MHC)-I, -IIA, -IIX, hybrid-I/IIA] using whole muscle immunohistochemistry and single fiber dot blots, gene expression, and microRNA abundance. There were significant main time effects for 1RM squat (p < 0.001), bench press (p < 0.001), and deadlift, (p = 0.024), powerlifting total (p < 0.001), Wilks Score (p < 0.001), squat jump peak-power scaled to body mass (p = 0.001), body mass (p = 0.005), fat mass (p = 0.002), and fat mass index (p = 0.002). There were significant main time effects for medial whole muscle cross-sectional area (mCSA) (p = 0.006) and averaged sites (p < 0.001). There was also a significant interaction for MHC-IIA fiber cross-sectional area (fCSA) (p = 0.014) with post hoc comparisons revealing increases following the step-taper only (p = 0.002). There were significant main time effects for single-fiber MHC-I% (p = 0.015) and MHC-IIA% (p = 0.033), as well as for MyoD (p = 0.002), MyoG (p = 0.037), and miR-499a (p = 0.033). Overall, increases in whole mCSA, fCSA, MHC-IIA fCSA, and MHC transitions appeared to favor the step taper group. An overreach followed by a step taper appears to produce a myocellular environment that enhances skeletal muscle adaptations, whereas an exponential taper may favor neuromuscular performance.


2021 ◽  
Author(s):  
Tomer Jordi Chaffer ◽  
Marina Cefis ◽  
Jean‐Philippe Leduc‐Gaudet

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255178
Author(s):  
Nanami Senoo ◽  
Takumi Akahori ◽  
Hiyori Ichida ◽  
Noriyuki Miyoshi ◽  
Akihito Morita ◽  
...  

Fasting stimulates catabolic reactions in skeletal muscle to survive nutrient deprivation. Cellular phospholipids have large structural diversity due to various polar-heads and acyl-chains that affect many cellular functions. Skeletal muscle phospholipid profiles have been suggested to be associated with muscle adaptations to nutritional and environmental status. However, the effect of fasting on skeletal muscle phospholipid profiles remains unknown. Here, we analyzed phospholipids using liquid chromatography mass spectrometry. We determined that fasting resulted in a decrease in 22:6-containing phosphatidylcholines (PCs) (22:6-PCs) and an increase in 18:2-containing PCs (18:2-PCs). The fasting-induced increase in 18:2-PCs was sufficient to complement 22:6-PCs loss, resulting in the maintenance of the total amount of polyunsaturated fatty acid (PUFA)-containing PCs. Similar phospholipid alterations occurred in insulin-deficient mice, which indicate that these observed phospholipid perturbations were characteristic of catabolic skeletal muscle. In lysophosphatidic acid acyltransferase 3-knockout muscles that mostly lack 22:6-PCs, other PUFA-containing PCs, mainly 18:2-PCs, accumulated. This suggests a compensatory mechanism for skeletal muscles to maintain PUFA-containing PCs.


Author(s):  
Vitor Angleri ◽  
Carlos Ugrinowitsch ◽  
Cleiton Augusto Libardi

AbstractUsing a within-subject design we compared the individual responses between drop-set (DS) vs. traditional resistance training (TRAD) (n=16) and crescent pyramid (CP) vs. TRAD (n=15). Muscle cross-sectional area (CSA), leg press and leg extension 1 repetition maximum (1-RM) were assessed pre and post training. At group level, CSA increased from pre to post (DS: 7.8% vs. TRAD: 7.5%, P=0.02; CP: 7.5% vs. TRAD: 7.8%, P=0.02). All protocols increased the 1-RM from pre to post for leg press (DS: 24.9% vs. TRAD: 26.8%, P < 0.0001; CP: 27.3% vs. TRAD:2 6.3%, P < 0.0001) and leg extension (DS: 17.1% vs. TRAD: 17.3%, P < 0.0001; CP: 17.0% vs. TRAD: 16.6%, P < 0.0001). Individual analysis for CSA demonstrated no differences between protocols in 15 subjects. For leg press 1-RM, 5 subjects responded more to TRAD, 2 to DS and 9 similarly between protocols. In TRAD vs. CP, 4 subjects responded more to CP, 1 to TRAD and 10 similarly between protocols. For leg extension 1-RM 2 subjects responded more to DS, 3 to TRAD and 11 similarly between protocols. Additionally, 2 subjects responded more to CP, 2 to TRAD and 11 similarly between protocols. In conclusion, all protocols induced similar individual responses for CSA. For 1-RM, some subjects experience greater gains for the protocol performed with higher loads, such as CP.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Emerson Luiz Teixeira ◽  
Carlos Ugrinowitsch ◽  
Vitor de Salles Painelli ◽  
Carla Silva-Batista ◽  
André Yui Aihara ◽  
...  

Author(s):  
Ewertton de Souza Bezerra ◽  
Brad J. Schoenfeld ◽  
Lucas Bet da Rosa Orssatto ◽  
Jerry L. Mayhew ◽  
Alex Silva Ribeiro

Abstract Manipulation of resistance training variables has been shown to have a substantial effect on muscular adaptations. A major variable in this process is exercise selection. In addition to the effectiveness of a given exercise to recruit the target muscle groups, safety considerations and individual comfort during execution of a lift should be considered. The correct biomechanics of the chosen exercise will assist in promoting desired muscle adaptations, while proper safety procedures will reduce risk of injury. Lifting comfort will facilitate enjoyment and foster adherence to the program. Therefore, the purpose of this paper was to offer guidelines for selection of resistance training exercises based on the Efficiency, Safety, and Comfort Analysis Method (ESCAM).


Sign in / Sign up

Export Citation Format

Share Document