SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: evidence for rapid deposition of sedimentary strata

2000 ◽  
Vol 37 (9) ◽  
pp. 1287-1300 ◽  
Author(s):  
Karl V Evans ◽  
John N Aleinikoff ◽  
John D Obradovich ◽  
C Mark Fanning

New sensitive high resolution ion microprobe (SHRIMP) U–Pb zircon analyses from two tuffs and a felsic flow in the middle and upper Belt Supergroup of northwestern Montana significantly refine the age of sedimentation for this very thick (15-20 km) Middle Proterozoic stratigraphic sequence. In ascending stratigraphic order, the results are (1) 1454 ± 9 Ma for a tuff in the upper part of the Helena Formation at Logan Pass, Glacier National Park; (2) 1443 ± 7 Ma for a regionally restricted porphyritic rhyolite to quartz latite flow of the Purcell Lava in the Yaak River region; and (3) 1401 ± 6 Ma for a tuff in the very thin transition zone between the Bonner Quartzite and Libby Formation, west of the town of Libby. Combining these ages with those previously published by other workers for ca. 1470-Ma sills in the lower Belt in Montana and Canada indicates that all but the uppermost Belt strata (about 1700 m) were deposited over a period of about 70 million years, considerably reducing the time span from longstanding estimates ranging from 250 to 600 million years. Calculated sediment accumulation rates between dated samples indicates rapid, but not unreasonable, values for early Belt strata, with decreasing rates through time. These ages also suggest the inadequacy of previously published paleomagnetic data to resolve Belt Supergroup chronology at an appropriate level of accuracy.

2020 ◽  
Author(s):  
Christina Stouraiti ◽  
Stelios Lozios ◽  
Konstantinos Soukis ◽  
Hilary Downes ◽  
Andy Carter

<p>Triassic geodynamic phenomena in the Aegean area are largely controlled by subduction of the Paleotethys ocean and opening of the Neotethys oceans. Triassic volcanosedimentary sequences have a complex composition in many cases, reflecting both subduction and rifting setting.</p><p>Detailed mapping of NE Attica (Penteli Mt., Marathonas, Varnavas) revealed the existence of a structurally lower meta-volcanosedimentary sequence, which, comprises quartzofeldspathic rocks, schists, quartzite, metabasite and acid meta-volcanics This sequence is isoclinally folded in the macro-scale with marble layers and the axial plane foliation displays greenschist facies assemblages, whereas earlier HP minerals are mostly preserved as inclusions in albite porphyroblasts. The sequence of rocks has been investigated for their geochemical composition and their field relationships. Two assemblages of volcanic rocks are distinguished based on geochemical criteria: (a) a predominant subalkaline andesite-rhyolite series with a significant proportion of meta-tuffs in the stratigraphic sequence and (b) minor alkali basalts. Lenses of felsic meta-volcanic rocks alternate with siliciclastic layers showing sedimentary banding and allow for an interpretation of a volcano-sedimentary succession.</p><p>The geochemical characteristics of the alkali basalts are typical of rift settings (positive anomalies in Nb, Ta, Ti and P) and plot in the field of within plate basalts in the tectonic discrimination diagrams.  The trace element and Rare Earth Element characteristics of the andesites and rhyolites in the subalkaline group show many characteristics of subduction zone melts e.g. negative Nb and Ta anomalies, positive Pb anomaly and LREE-enriched suggesting that a metasomatized mantle wedge source played an important role in the formation of the calcalkaline magmas. A geodynamic model of rift formation in the active continental margin of Pelagonia is proposed to explain the transition from a subduction- to an extension-related magmatic activity in the Late Permian/Triassic time in the broader NE Attica-central Evvia region.</p>


Sign in / Sign up

Export Citation Format

Share Document