Physical volcanology of the footwall rocks near the Mattabi massive sulphide deposit, Sturgeon Lake, Ontario

1988 ◽  
Vol 25 (2) ◽  
pp. 280-291 ◽  
Author(s):  
D. A. Groves ◽  
R. L. Morton ◽  
J. M. Franklin

Subaerial and shallow subaqueous mafic hyalotuffs, lava flows, and flow breccias, felsic lava flows, and pyroclastic flows and falls form a 2 km thick succession beneath the Mattabi massive sulphide deposit. The lowermost 800 m of section comprises massive to amygdaloidal mafic flows and flow breccias interlayered with repetitive sequences of thinly bedded felsic tuff: pillow lavas and hyaloclastites are absent. Amygdaloidal felsic lavas overlie the mafic flows and are locally capped by coarse explosion breccia. This breccia is believed to represent the start of mafic hydrovolcanism, which produced ash falls, surges, and flows. These pyroclastic deposits formed thin- to thick-bedded hyalotuffs that contain highly vesicular and quenched juvenile and accessory lithic fragments. Periods of water influx probably led to the construction of a tuff cone, which represents a submergent hydrovolcanic cycle.In the Mattabi area, pyroclastic flow deposits form the immediate mine footwall strata and include (i) massive basal beds and overlying bedded ash tuffs and (ii) massive pumiceous units. These deposits overlie and, to the west in the Darkwater Lake area, are intercalated with the mafic hyalotuff sequence. The morphology of the footwall volcanic rocks indicates that the Mattabi and the F-zone massive sulphide deposits formed in a shallow subaqueous environment.

2016 ◽  
Vol 53 (12) ◽  
pp. 1458-1475
Author(s):  
Patrick J. Sack ◽  
Ron F. Berry ◽  
J. Bruce Gemmell ◽  
Sebastien Meffre ◽  
Andrew West

This paper presents results of a laser ablation – inductively coupled plasma – quadrapole mass spectrometer (LA–ICP–QMS) U–Pb dating study of small in situ zircon grains from samples collected in the vicinity of the Greens Creek massive sulphide deposit, on northern Admiralty Island, southeast Alaska. The Greens Creek mine is a volcanogenic massive sulphide deposit in the central portion of the Alexander Triassic metallogenic belt (ATMB) and is one of the top global silver producers despite having a dominantly mafic metavolcanic stratigraphic footwall. The stratigraphic footwall is a Mississippian mafic metavolcanic sequence with a protolith age of approximately 340–330 Ma. The first U–Pb zircon constrained chronostratigraphy for the area places the deposit near, or at, the base of the host Late Triassic stratigraphy just above an approximately 100 million year old unconformity and probably 10–15 million years older than mineralization at the Palmer and Windy Craggy deposits in the northern portion of the ATMB. The stratigraphic location of the Greens Creek deposit is atypical for a syngenetic massive sulphide deposit, and this may, at least partly, explain its unusual metal endowment. Pre-mineralization Permian U–Pb zircon metamorphic ages are consistent with published 273–260 Ma white mica ages related to the collision of the Admiralty and Craig subterranes, the basement to the ATMB. The much older age of the footwall rocks and their Permian pre-mineralization metamorphism demonstrates that though the mafic volcanic rocks are not genetically linked to the deposit, they likely influenced the style of alteration and mineralization.


2001 ◽  
Vol 20 (3) ◽  
pp. 210-218 ◽  
Author(s):  
Lianxing Gu ◽  
Xinjian Xiao ◽  
Pei Ni ◽  
Changzhi Wu ◽  
hongli Mao

Sign in / Sign up

Export Citation Format

Share Document