white mica
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 97)

H-INDEX

29
(FIVE YEARS 4)

Lithos ◽  
2021 ◽  
Vol 404-405 ◽  
pp. 106443
Author(s):  
S. Ghignone ◽  
M. Sudo ◽  
G. Balestro ◽  
A. Borghi ◽  
M. Gattiglio ◽  
...  

Lithos ◽  
2021 ◽  
pp. 106533
Author(s):  
Taran W. Bradley ◽  
Gokce K. Ustunisik ◽  
Edward F. Duke ◽  
Ali T. Ünlüer ◽  
Demet K. Yıldırım ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jeffrey W. Hedenquist ◽  
Antonio Arribas

Abstract Advanced argillic minerals, as defined, include alunite and anhydrite, aluminosilicates (kaolinite, halloysite, dickite, pyrophyllite, andalusite, zunyite, and topaz), and diaspore. One or more of these minerals form in five distinctly different geologic environments of hydrolytic alteration, with pH 4–5 to <1, most at depths <500 m. (1) Where an intrusion-related hydrothermal system, typical of that associated with porphyry Cu ± Au deposits, evolves to white-mica stability, continued ascent and cooling of the white-mica–stable liquid results in pyrophyllite (± diaspore) becoming stable near the base of the lithocap. (2) A well-understood hypogene environment of formation is vapor condensation near volcanic vents, where magmatic SO2 and HCl condense into local groundwater to produce H2SO4 and HCl-rich solutions with a pH of 1–1.5. Close to isochemical dissolution of the host rock occurs because of the high solubility of Al and Fe hydroxides at pH <2, except for the SiO2 component, which remains as a siliceous residue because of the relatively low solubility of SiO2. This residual quartz, commonly with a vuggy texture, is largely barren of metals because of the low metal content in high-temperature but low-pressure volcanic vapor. Rock dissolution causes the pH of the acidic solution to increase, such that alunite and kaolinite (or dickite or pyrophyllite at higher temperatures) become stable, forming a halo to the residual quartz. This initially barren residual quartz, which forms a lithocap horizon where permeable lithologic units are intersected by the feeder structure, may become mineralized if a subsequent white-mica–stable liquid ascends to this level and precipitates copper and gold. (3) Boiling of a hydrothermal liquid generates vapor with CO2 and H2S. Where the vapor condenses above the water table, atmospheric O2 in the vadose (unsaturated) zone causes oxidation of H2S to sulfuric acid, forming a steam-heated acid-sulfate solution with pH of 2–3. In this environment, kaolinite and alunite form in horizons above the water table at <100°C. Silica derived within the vadose zone will precipitate as amorphous silica at the water table, as the condensate follows the hydraulic gradient, causing opal replacement above and at the aquifer. (4) By contrast, where condensation of this vapor occurs below the water table, the CO2 in solution forms carbonic acid (H2CO3), leading to a pH of 4–5. This marginal carapace of condensate, with temperatures up to 150°–170°C, commonly acts as a diluent of the ascending parental NaCl liquid. This steam-heated liquid forms intermediate argillic alteration of clays, kaolinite, and Fe-Mn carbonates; this kaolinite, which can be present at depths of several hundreds of meters, can potentially be mistaken as having been caused by a steam-heated acid-sulfate or supergene overprint. (5) The final setting is supergene, caused by posthydrothermal weathering and oxidation of mainly pyrite, locally creating pH <1 liquid because of high concentrations of H2SO4 within the vadose zone and forming kaolinite, alunite, and Fe oxyhydroxides. This genetic framework of formation environments of advanced (and intermediate) argillic alteration provides the basis to interpret alteration mineralogy, in combination with alteration textures and morphology plus zonation, including the overprint of one alteration style on another. This framework can be used to help focus exploration for and assessment of hydrothermal ore deposits, including epithermal, porphyry, and volcanic-hosted massive sulfide.


2021 ◽  
pp. 000370282110478
Author(s):  
Carlos Arbiol ◽  
Graham D. Layne

Raman spectroscopy of fine-grained hydrothermal alteration minerals, and phyllosilicates in particular, presents certain challenges. However, given the increasingly widespread recognition of field portable visible–near infrared–shortwave infrared (Vis-NIR-SWIR) spectroscopy as a valuable tool in the mineral exploration industry, Raman microspectroscopy has promise as an approach for developing detailed complementary information on hydrothermal alteration phases in ore-forming systems. Here we present exemplar high-quality Raman and Vis-NIR-SWIR spectra of four key hydrothermal alteration minerals (pyrophyllite, white mica, chlorite, and alunite) that are common in precious metal epithermal systems, from deposits on the island of Newfoundland, Canada. The results reported here demonstrate that Raman microspectroscopy can accurately characterize pyrophyllite, white mica, chlorite, and alunite and provide details on their compositional variation at the microscale. In particular, spectral differences in the 1000–1150 cm−1 white mica Raman band allows the distinction between low-Tschermak phases (muscovite, paragonite) and phases with higher degrees of Tschermak substitution (phengitic white mica composition). The peak position of the main chlorite Raman band shifts between 683 cm−1 for Mg-rich chlorite and 665 cm−1 for Fe-rich chlorite and can be therefore used for semiquantitative estimation of the Fe2+ content in chlorite. Furthermore, while Vis-NIR-SWIR macrospectroscopy allows the rapid identification of the overall composition of the most abundant hydrothermal alteration mineral in a given sample, Raman microspectroscopy provides an in-depth spectral and chemical characterization of individual mineral grains, preserving the spatial and paragenetic context of each mineral and allowing for the distinction of chemical variation between (and within) different mineral grains. This is particularly useful in the case of alunite, white mica, and chlorite, minerals with extensive solid solution, where microscale characterization can provide information on the alteration zonation useful for mineral exploration and provide insight into mineral deposit genesis.


Author(s):  
B. Grasemann ◽  
D.A. Schneider ◽  
K. Soukis ◽  
V. Roche ◽  
B. Hubmann

The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the syn-orogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE−trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 988
Author(s):  
Marián Putiš ◽  
Ondrej Nemec ◽  
Martin Danišík ◽  
Fred Jourdan ◽  
Ján Soták ◽  
...  

The composite Albian–Eocene orogenic wedge of the northern part of the Inner Western Carpathians (IWC) comprises the European Variscan basement with the Upper Carboniferous–Triassic cover and the Jurassic to Upper Cretaceous sedimentary successions of a large oceanic–continental Atlantic (Alpine) Tethys basin system. This paper presents an updated evolutionary model for principal structural units of the orogenic wedge (i.e., Fatricum, Tatricum and Infratatricum) based on new and published white mica 40Ar/39Ar geochronology and P–T estimates by Perple_X modeling and geothermobarometry. The north-directed Cretaceous collision led to closure of the Jurassic–Early Cretaceous basins, and incorporation of their sedimentary infill and a thinned basement into the Albian–Cenomanian/Turonian accretionary wedge. During this compressional D1 stage, the subautochthonous Fatric structural units, including the present-day higher Infratatric nappes, achieved the metamorphic conditions of ca. 250–400 °C and 400–700 MPa. The collapse of the Albian–Cenomanian/Turonian wedge and contemporary southward Penninic oceanic subduction enhanced the extensional exhumation of the low-grade metamorphosed structural complexes (D2 stage) and the opening of a fore-arc basin. This basin hemipelagic Coniacian–Campanian Couches-Rouges type marls (C.R.) spread from the northern Tatric edge, throughout the Infratatric Belice Basin, up to the peri-Pieniny Klippen Belt Kysuca Basin, thus tracing the south-Penninic subduction. The ceasing subduction switched to the compressional regime recorded in the trench-like Belice “flysch” trough formation and the lower anchi-metamorphism of the C.R. at ca. 75–65 Ma (D3 stage). The Belice trough closure was followed by the thrusting of the exhumed low-grade metamorphosed higher Infratatric complexes and the anchi-metamorphosed C.R. over the frontal unmetamorphosed to lowest anchi-metamorphosed Upper Campanian–Maastrichtian “flysch” sediments at ca. 65–50 Ma (D4 stage). Phengite from the Infratatric marble sample SRB-1 and meta-marl sample HC-12 produced apparent 40Ar/39Ar step ages clustered around 90 Ma. A mixture interpretation of this age is consistent with the presence of an older metamorphic Ph1 related to the burial (D1) within the Albian–Cenomanian/Turonian accretionary wedge. On the contrary, a younger Ph2 is closely related to the late- to post-Campanian (D3) thrust fault formation over the C.R. Celadonite-enriched muscovite from the subautochthonous Fatric Zobor Nappe meta-quartzite sample ZI-3 yielded a mini-plateau age of 62.21 ± 0.31 Ma which coincides with the closing of the Infratatric foreland Belice “flysch” trough, the accretion of the Infratatricum to the Tatricum, and the formation of the rear subautochthonous Fatricum bivergent structure in the Eocene orogenic wedge.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 903
Author(s):  
Marisol Pérez ◽  
Marcelo García ◽  
Brian Townley ◽  
Katja Deckart

The oceanic seabed contains a variety of mineral resources related exclusively to submarine environments. Limited information has been documented for the seabed offshore of Chile, which is particularly interesting due to its geodynamic context and large area. Mineralogical and geochemical analyses of 16 sites within the Chiloé–Taitao area, from 83 to 3388 m in depth, were carried out. The most abundant minerals are quartz, feldspars, pyroxenes, amphiboles, epidote, and biotite, with lower quantities of zircon, white mica, olivine, pyrite, magnetite, ilmenite, and hematite. Framboidal pyrites are mainly present at >900 m depth, and could be associated with methane hydrates, which have been reported in the area and its surroundings. Tenorite, sphalerite, tennantite, cordierite, birnessite, and tellurobismuthite were revealed by XRD analysis at low concentrations but at many sites. Birnessite, a Fe–Mn nodule-forming mineral, was widely detected, and Pearson correlations showed elemental associations related to the presence of Mn oxides. Samples did not evidence Fe–Mn nodules, probably due to the redox and depth conditions. Nonetheless, it is probable that to the west, polymetallic nodules are present in deeper zones. In the southern part of the area, reflective grains were identified, with up to 58.3 wt.% Cu; these grains might be derived from the continent or formed by in situ diagenetic precipitation.


2021 ◽  
pp. 104390
Author(s):  
Ao Li ◽  
Wu-Bin Yang ◽  
Qiang Shan ◽  
Xian-Zhang Yu ◽  
Guo-Zhan Xu ◽  
...  

2021 ◽  
pp. 104438
Author(s):  
Carlos Martín Medina ◽  
Diego Fernando Ducart ◽  
Josué Souza Passos ◽  
Leandro Rocha de Oliveira
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document