The Ainslie Detachment: a regional flat-lying extensional fault in the Carboniferous evaporitic Maritimes Basin of Nova Scotia, Canada

1996 ◽  
Vol 33 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Gregory Lynch ◽  
Peter S. Giles

The Ainslie Detachment occurs near the base of the Carboniferous Windsor Group, forming a regional flat-lying extensional fault distributed across 10 000 km2. New mapping has delineated the structure through southwestern Cape Breton Island and into central Nova Scotia. Shearing is concentrated at the top of the basal Macumber limestone along its contact with overlying evaporites and younger allochthonous units. The highly contrasting rheologies of the formations created an anisotropic zone of weakness which acted as an upper crustal stress guide, stratigraphically controlling the trajectory of the detachment through the basin. The detachment is characterized by an approximately 3–10 m thick calc-mylonite zone, with an intense planar fabric featuring alternating very fine grained shear planes and coarser annealed layers. Coarser layers are boudinaged into pinch and swell structures, locally producing segmented augen. Highly strained intraclasts, ooids, and peloids, recrystallized carbonate boudins, and carbonate vein segments are included in the calc-mylonite as semirigid inclusions and rotated porphyroclasts. Thick zones of fault breccia straddle portions of the detachment and overprint the mylonite, demonstrating an evolution to brittle conditions during progressive shear. Listric faults in the hanging wall of the detachment feature a ramp and flat geometry, with an upper detachment occurring along the upper contact of the Windsor Group with the overlying Namurian Mabou Group. Locally up to 2 km of the stratigraphic succession has been removed, with faults cutting downsection in a westerly direction producing rollover in the hanging wall.

2016 ◽  
Vol 154 (5) ◽  
pp. 1001-1021 ◽  
Author(s):  
STEPHEN R. WESTROP ◽  
ED LANDING

AbstractNew and archival collections from the Chelsey Drive Group of the Avalon terrane of Cape Breton Island, Nova Scotia, Canada, yield late Cambrian trilobites and agnostoid arthropods with full convexity that contrast with compacted, often deformed material from shale and slate typical of Avalonian Britain. Four species of the agnostoid Lotagnostus form a stratigraphic succession in the upper Furongian (Ctenopyge tumida–Parabolina lobata zones). Two species, L. ponepunctus (Matthew, 1901) and L. germanus (Matthew, 1901) are previously named; L. salteri and L. matthewi are new. Lotagnostus trisectus (Salter, 1864), the type species of the genus, is restricted to compacted material from its type area in Malvern, England. Lotagnostus americanus (Billings, 1860) has been proposed as a globally appropriate index for the base of ‘Stage 10’ of the Cambrian. All four species from Avalonian Canada are differentiated clearly from L. americanus in its type area in Laurentian North America (i.e., from debris flow blocks in Taconian Quebec). In our view, putative occurrences of L. americanus from other Cambrian continents record very different species. Lotagnostus americanus cannot be recognized worldwide, and other taxa should be sought to define the base of Stage 10, such as the conodont Eoconodontus notchhpeakensis.


2020 ◽  
Vol 56 ◽  
pp. 257-279
Author(s):  
Sandra M. Barr ◽  
Chris E. White ◽  
Sören Jensen ◽  
Teodoro Palacios ◽  
Deanne Van Rooyen

Scatarie Island and adjacent Hay Island, located 2 km east of the eastern tip of the Avalonian Mira terrane of southern Cape Breton Island, Nova Scotia, contain a succession of epiclastic and other sedimentary rocks of inferred Ediacaran to Cambrian age. The age assignment was based previously on lithological comparison with the Main-à-Dieu Group and overlying Bengal Road and MacCodrum formations of the Mira River Group. Detrital zircon grains from two sandstone samples from the Bengal Road Formation yielded typical Avalonian detrital zircon spectra with middle to late Neoproterozoic, Meso- to Paleoproterozoic (1300–2200 Ma) and Neoarchean ages. They indicate maximum depositional ages of 532.4 ± 4.2 Ma and 525.4 ± 2.4 Ma from essentially the same stratigraphic level, consistent with the interpretation that the rocks are Cambrian. The Bengal Road Formation also yielded scarce organic-walled microfossils including an acanthomorphic acritarch identified as Polygonium sp., also consistent with Cambrian age. The fine-grained siliciclastic succession on Hay Island, tentatively attributed to the MacCodrum Formation, yielded trace fossils, including Teichichnus isp. and Gyrolithes scintillus, that confirm Cambrian age. The Hay Island Gyrolithes scintillus expands the geographical distribution of this ichnospecies, previously known mainly from the Chapel Island Formation of Newfoundland, and represents a younger occurrence.


2007 ◽  
Vol 30 (5) ◽  
pp. 279-286 ◽  
Author(s):  
David J. Mossman ◽  
James D. Duivenvoorden ◽  
Fenton M. Isenor

2018 ◽  
Author(s):  
D A Kellett ◽  
S M Barr ◽  
D van Rooyen ◽  
C E White

Sign in / Sign up

Export Citation Format

Share Document