debris flow
Recently Published Documents


TOTAL DOCUMENTS

3463
(FIVE YEARS 920)

H-INDEX

84
(FIVE YEARS 11)

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105929
Author(s):  
Pasquale Marino ◽  
Srikrishnan Siva Subramanian ◽  
Xuanmei Fan ◽  
Roberto Greco

2022 ◽  
Author(s):  
Tiantian Zhang ◽  
Yueping Yin ◽  
Bin Li ◽  
Yang Gao ◽  
Meng Wang

Abstract On October 17 and 29, 2018, two rock and glacier avalanches occurred on the western slope of the Sedongpu Basin upstream of the Yarlung Zangbo River in the Tibetan Plateau, forming the disaster chains and causing damage to many bridges and roads. Based on the comparative analysis of multiple pre-and post-remote sensing images, the initial sliding body, which was composed of rock and glacial material, was located on a steep slope above an elevation of 6000 m. Under the coupling effect of multiple factors such as gravity, rainfall, and weather changes, the initial sliding body detached from the source zone and then transformed into a debris flow after impact and fragmentation. The debris flow traveled downstream and scraped loose glacial till in its path, causing the volume of the sliding body to increase. In addition, the debris flow traveled 10 km under low frictional resistance, as a result of the lubrication via early rainfall and glacial meltwater. Eventually, the debris flow rushed out onto the valley floor, forming a landslide dam and blocking the Yarlung Zangbo River. The deposit volumes on October 17 and 29 were 20.4 million m3 and 10.1 million m3, respectively, with a total mean thickness of ~22m. This study provides an insight into the dynamic process as they unfolded, through multitemporal satellite imagery and numerical simulation. Furthermore, we also discuss the potential cause of rock/ice avalanche and disaster scenarios, as well as the tendency of the rock and glacier avalanches are discussed.


2022 ◽  
Vol 13 (1) ◽  
pp. 289-309
Author(s):  
Vijendra Kumar Pandey ◽  
Rajesh Kumar ◽  
Rupendra Singh ◽  
Rajesh Kumar ◽  
Suresh Chand Rai ◽  
...  
Keyword(s):  

Author(s):  
Mingtao Ding ◽  
Aleksandr L. Shnyparkov ◽  
Pavel B. Grebennikov ◽  
Timur I. Khismatullin ◽  
Sergey A. Sokratov

The requirements of the debris flows’ parameters assessments vary from country to country. They are based on different theoretical and empirical constructions and are validated by data from different regions. This makes difficult comparison of the reported results on estimated debris flows activity and extent. The Russian normative documents for the debris flows’ parameters calculations are based on empirically-measured parameters in wide range of geological and climatic conditions at the territory of former USSR, but still not cover all the possible conditions of debris flow formation. An attempt was made to check applicability of the Russian empirical constructions for the conditions of the debris flows formation in Yunnan, China, where unique long-term dataset of debris flows characteristics is collected by the Dongchuan Debris Flow Observation and Research Station. The results show, that in general the accepted in Russia methodology of calculation of the parameters of debris flows of certain probability corresponded well to the observed in Dongchuan debris flows characteristics. Some discrepancies (in the average debris flow depth) can be explained by unknown exact return period of the actually observed debris flows. This allowed to conclude that the presently adopted empirical dependencies based on country-wide (USSR) empirical data can be extrapolated up to the monsoon climate and geological conditions of Yunnan province.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 182
Author(s):  
Yu Huang ◽  
Xiaoyan Jin ◽  
Junji Ji

The destructive and impactful forces of debris flow commonly causes local damage to engineering structures. The effect of a deformable barrier on the impact dynamics is important in engineering design. In this study, a flow–structure coupled with Smoothed Particle Hydrodynamics model was presented to investigate the effects of barrier stiffness on the debris impact. A comparison of the results of physical tests and simulation results revealed that the proposed smoothed particle hydrodynamics model effectively reproduces the flow kinematics and time history of the impact force. Even slight deflections of the deformable barrier lead to obvious attenuation of the peak impact pressure. Additionally, deformable barriers with lower stiffness tend to deform more downstream upon loading, shifting the deposited sand toward the active failure mode and generating less static earth pressure. When the debris flow has a higher frontal velocity, the impact force on the barrier is dominated by the dynamic component and there is an appreciable effect of the stiffness of the deformable barrier on load attenuation.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 177
Author(s):  
Yu Huang ◽  
Xiaoyan Jin ◽  
Junji Ji

Debris flows often cause local damage to engineering structures by exerting destructive impact forces. The debris-flow–deformable-barrier interaction is a significant issue in engineering design. In this study, a large physical flume model test device was independently designed to repeatedly reproduce the flow and impact process of debris flow. Three physical flume tests were performed to investigate the effect of barrier stiffness on the debris flow impact. The flow kinematics of debris flow with three barrier stiffness values are essentially consistent with the process of impact–run-up–falling–pile-up. The development of a dead zone provided a cushion to diminish the impact of the follow-up debris flow on the barrier. The peak impact forces were attenuated as the barrier stiffness decreased. The slight deflections of a deformable barrier were sufficiently effective for peak load attenuation by up to 30%. It showed that the decrease of the barrier stiffness had a buffer effect on the debris flow impact and attenuated the peak impact force. And with the decrease of the barrier stiffness, when the barrier was impacted by the same soil types, the recoverable elastic strain will be larger, and the strain peak will be more obvious.


Sign in / Sign up

Export Citation Format

Share Document