An integrated restriction fragment length polymorphism - amplified fragment length polymorphism linkage map for cultivated sunflower

Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Melaku Ayele Gedil ◽  
Crispin Wye ◽  
Simon Berry ◽  
Bart Segers ◽  
Johan Peleman ◽  
...  

Restriction fragment length polymorphism (RFLP) maps have been constructed for cultivated sunflower (Helianthus annuus L.) using three independent sets of RFLP probes. The aim of this research was to integrate RFLP markers from two sets with RFLP markers for resistance gene candidate (RGC) and amplified fragment length polymorphism (AFLP) markers. Genomic DNA samples of HA370 and HA372, the parents of the F2 population used to build the map, were screened for AFLPs using 42 primer combinations and RFLPs using 136 cDNA probes (RFLP analyses were performed on DNA digested with EcoRI, HindIII, EcoRV, or DraI). The AFLP primers produced 446 polymorphic and 1101 monomorphic bands between HA370 and HA372. The integrated map was built by genotyping 296 AFLP and 104 RFLP markers on 180 HA370 × HA372 F2 progeny (the AFLP marker assays were performed using 18 primer combinations). The HA370 × HA372 map comprised 17 linkage groups, presumably corresponding to the 17 haploid chromosomes of sunflower, had a mean density of 3.3 cM, and was 1326 cM long. Six RGC RFLP loci were polymorphic and mapped to three linkage groups (LG8, LG13, and LG15). AFLP markers were densely clustered on several linkage groups, and presumably reside in centromeric regions where recombination is reduced and the ratio of genetic to physical distance is low. Strategies for targeting markers to euchromatic DNA need to be tested in sunflower. The HA370 × HA372 map integrated 14 of 17 linkage groups from two independent RFLP maps. Three linkage groups were devoid of RFLP markers from one of the two maps.Key words: amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism (RFLP), Helianthus, sunflower, genetic map.

Genome ◽  
1992 ◽  
Vol 35 (5) ◽  
pp. 765-771 ◽  
Author(s):  
L. S. O'Donoughue ◽  
Z. Wang ◽  
M. Röder ◽  
B. Kneen ◽  
M. Leggett ◽  
...  

A restriction fragment length polymorphism (RFLP) map for the A genome of Avena has been developed using F3 families from the cross A. atlantica × A. hirtula. The main source of markers were an oat cDNA and a barley cDNA library. A total of 194 RFLP markers was used, 192 of which were mapped or assigned to linkage groups. Seven main linkage groups, presumably corresponding to the seven chromosomes of the haploid genome, were identified. The linkage groups varied in size from 30 to 118 cM for a total map length of 614 cM. This map provides a tool for the interpretation of genome organization in Avena and for marker selection in the development of a map of hexaploid oats.Key words: restriction fragment length polymorphism, Avena, mapping.


Genome ◽  
2001 ◽  
Vol 44 (3) ◽  
pp. 401-412 ◽  
Author(s):  
X -F. Ma ◽  
K Ross ◽  
J P Gustafson

Using wheat ditelosomic lines and in situ hybridization of biotin-labelled DNA probes, 18 restriction fragment length polymorphism (RFLP) markers were physically located on homoeologous groups 1 and 3 chromosomes of wheat. Most of the markers hybridized to chromosome arms in a physical order concordant with the genetic maps. A majority of the markers studied were clustered in non-C-banded, distal euchromatic areas, indicating the presence of recombination hot spots and cold spots in those regions. However, on 1BS the markers were well dispersed, which could be due to the abundance of heterochromatin throughout the arm. An inversion between Xpsr653 and Xpsr953 was observed on 1AL. One new Xpsr688 locus, approximately 20–26% from the centromere, was found on 1AS and 1BS. The physical location of Xpsr170 on group 3 chromosomes probably represents an alternative to the loci on the genetic map. Finally, Xpsr313 was mapped to two physical loci on 1DL. Five markers were located to bins consistent with the deletion-based physical maps.Key words: wheat, physical mapping, in situ hybridization.


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. D. Gale ◽  
P. J. Sharp ◽  
S. Chao ◽  
C. N. Law

A molecular map of wheat, Triticum aestivum, is being developed. Problems associated with the large genome size, the large number of linkage groups, polyploidy, and limited polymorphism at the DNA level are being overcome. In addition to the breeding applications expected from the map, various uses for restriction fragment length polymorphism markers as tools in cytogenetic manipulation of wheat chromosomes and those from related species are being found. These include identification of aneuploid genotypes, added precision in intervarietal chromosome manipulations, tests of chromosome stability, identification of alien chromosomes, and marker-aided introgression of genes of agronomic importance from related species.Key words: wheat, restriction fragment length polymorphism, genetic maps, aneuploidy, alien chromosomes.


2001 ◽  
Vol 31 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Camile Pizeta Semighini ◽  
Guillaume Delmas ◽  
Steven Park ◽  
Donald Amstrong ◽  
David Perlin ◽  
...  

Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 242-248 ◽  
Author(s):  
Seliina Päällysaho ◽  
Susanna Huttunen ◽  
Anneli Hoikkala

We have identified six restriction fragment length polymorphism (RFLP) markers based on unique gene sequences on the X chromosome of Drosophila virilis and D. littoralis. The markers were localized by in situ hybridization on larval polytene chromosomes, and the conjugation of the X chromosomes of the two species was studied in salivary glands of interspecific hybrid female larvae. The gene arrangement of D. virilis and D. littoralis appeared to be very different at the proximal end of the X chromosome preventing recombination between RFLP markers located in this area. Simple quantitative trait loci (QTL) analysis showed that five of our marker genes (including nonA and Dmca1A, previously found to affect male courtship song in D. melanogaster) are linked with a gene(s) having a major effect on species differences in the male courtship song between D. virilis and D. littoralis. This shows that the song gene(s) may be located inside a large X-chromosomal inversion in D. littoralis (as previously suggested), but that it may also be located on an area between this inversion and the centromere, close to nonA and Dmca1A. Localization of this gene or gene complex will be continued with the aid of our newly identified RFLP markers by making interspecific crosses between D. virilis group species with more similar X chromosomes.Key words: restriction fragment length polymorphism (RFLP), in situ hybridization, Drosophila virilis.


2006 ◽  
Vol 96 (10) ◽  
pp. 1157-1163 ◽  
Author(s):  
Xinshun Qu ◽  
Barbara J. Christ

Spongospora subterranea f. sp. subterranea causes powdery scab in potatoes and is distributed worldwide. Genetic studies of this pathogen have been hampered due, in part, to its obligate parasitism and the lack of molecular markers for this pathogen. In this investigation, a single cystosorus inoculation technique was developed to produce large amounts of S. subterranea f. sp. subterranea plasmodia or zoosporangia in eastern black nightshade (Solanum ptycanthum) roots from which DNA was extracted. Cryopreservation of zoosporangia was used for long-term storage of the isolates. S. subterranea f. sp. subterranea-specific restriction fragment length polymorphism (RFLP) markers were developed from randomly amplified polymorphic DNA (RAPD) fragments. Cystosori of S. subterranea f. sp. subterranea were used for RAPD assays and putative pathogen-specific RAPD fragments were cloned and sequenced. The fragments were screened for specificity by Southern hybridization and subsequent DNA sequence BLAST search. Four polymorphic S. subterranea f. sp. subterranea-specific probes containing repetitive elements, and one containing single copy DNA were identified. These RFLP probes were then used to analyze 24 single cystosorus isolates derived from eight geographic locations in the United States and Canada. Genetic variation was recorded among, but not within, geographic locations. Cluster analysis separated the isolates into two major groups: group I included isolates originating from western North America, with the exception of those from Colorado, and group II included isolates originating from eastern North America and from Colorado. The techniques developed in this study, i.e., production of single cystosorus isolates of S. subterranea f. sp. subterranea and development of RFLP markers for this pathogen, provide methods to further study the genetic structure of S. subterranea f. sp. subterranea.


1999 ◽  
Vol 45 (9) ◽  
pp. 754-763 ◽  
Author(s):  
S Restrepo ◽  
T L Valle ◽  
M C Duque ◽  
V Verdier

Xanthomonas axonopodis pv.manihotis (Xam) causes bacterial blight, a major disease of cassava, which is a starchy root crop that feeds about 500 million people throughout the world. To better select resistant cassava germplasm, we examined the population structure of Xam in Brazil, Latin America's largest producer of cassava, and a major center of diversity for the crop. The 79 strains collected between 1941 and 1996 from three edaphoclimatic zones were analyzed by restriction fragment length polymorphism (RFLP), using a probe linked to a Xam pathogenicity gene (pthB). Thirty-eight haplotypes were identified, and geographical differentiation for the Xam strains was demonstrated. Strains from subtropical zone (ECZ 6) showed high genetic diversity in most of the sites from which they were collected. They also showed migration from site to site. RFLP and amplified fragment length polymorphism (AFLP) analyses were carried out on 37 Xam strains and compared; the AFLP assays were performed using eight primer combinations. A multiple correspondence analysis, used to assess genetic relatedness among strains and estimate genetic diversity, indicated that the Brazilian Xam population showed high diversity. No correlation was found between AFLP and RFLP data, but the two techniques provided complementary information on the genetic diversity of Xam. Most strains were highly aggressive on a susceptible cultivar. The genetic analysis presented here contributes to a better understanding of the Xam population structure in Brazil and will help select strains of the pathogen for screening cassava germplasm resistant to the disease.Key words: cassava bacterial blight, resistance, genetic diversity, molecular characterization.


Sign in / Sign up

Export Citation Format

Share Document