TRANSFER OF CORNERSTONE MALE-STERILITY MUTANT TO TETRAPLOID WHEAT AND HEXAPLOID AND OCTOPLOID TRITICALES

1981 ◽  
Vol 23 (3) ◽  
pp. 493-496 ◽  
Author(s):  
M. A. Hossain ◽  
C. J. Driscoll

A γ-ray induced male-sterility mutant on chromosome 4A of Triticum aestivum L. (Cornerstone mutant ms1c) was transferred to T. durum Desf. by backcrossing. Selfed heterozygotes of T. durum produced fewer male-sterile plants than those of T. aestivum. Male-sterile plants of T. durum and T. aestivum were crossed with diploid rye (Secale cereale L.) and fertile hexaploid and octoploid triticales were obtained following colchicine treatment of the F1's. Thus, rye is able to restore fertility at both of these ploidy levels.

1981 ◽  
Vol 23 (2) ◽  
pp. 191-193 ◽  
Author(s):  
D. G. Tanner

Intergeneric hybridization between six hexaploid wheat (Triticum aestivum L.) cultivars and five inbred rye (Secale cereale L.) lines was used to study the influence of parental genotypes upon chromosome doubling after colchicine treatment. Significant differences were attributed to independent effects of the wheat and rye parents. Self-fertility of the derived amphidiploids was positively correlated with colchicine responsiveness.


Bragantia ◽  
1984 ◽  
Vol 43 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Carlos Eduardo de Oliveira Camargo ◽  
João Carlos Fenício

Foram estudados sete cultivares de trigo (Triticum aestivum L. ), um de trigo duro (Triticum durum L.), sete de triticale e dois de centeio (Secale cereale L.), em soluções nutritivas contendo quatro níveis de alumínio tóxico. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em soluçâo sem alumínio após um período de 48 horas em solução contendo uma concentração conhecida de alumínio. A temperatura de 28 ± 1 °C foi mantida constante nas soluções durante o experimento. Os cultivares de centeio, Goyarowo e Branco, foram tolerantes a 20mg/ litro de Al3+; os de trigo, Siete Cerros, Tobari-66 e Cocorit, foram sensíveis a 5mg/lítro de alumínio, porém BH-1146, IAC-5, BR-1 e IAC-18 foram tolerantes e, IAC-17, moderadamente tolerante a essa concentração de alumínio; os cultivares de triticale, PFT-763, TCEP-77142, PFT-764, TCEP-75709, Cynamon, TCEP-77138 e TCEP-77136, foram tolerantes a 5mg/litro de Al3+. Todos os cultivares de trigo e triticale foram sensíveis a 10mg/litro de Al3+.


2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


Botany ◽  
2012 ◽  
Vol 90 (6) ◽  
pp. 433-444 ◽  
Author(s):  
Keshav Dahal ◽  
Khalil Kane ◽  
Fathey Sarhan ◽  
Bernard Grodzinski ◽  
Norman P.A. Hüner

We assessed the effects of short-term elevated CO2 on the light-saturated rates of photosynthesis (Asat) of spring (‘SR4A’, ‘Katepwa’) and winter (‘Musketeer’, ‘Norstar’) wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) cultivars grown at ambient CO2 (380 µmol C·mol–1) at either 20/16 °C (nonacclimated, NA) or 5/5 °C (cold acclimated, CA). In spring wheat–rye, cold acclimation decreased CO2-stimulation of Asat by 45%–60% relative to NA controls following a short-term (80 h) shift of plants from ambient to elevated CO2 (700 µmol C·mol–1). In contrast, in winter wheat–rye, cold acclimation enhanced CO2-stimulation of Asat by 15%–35% relative to NA controls upon a shift to elevated CO2. The stimulation observed for CA spring cultivars was about 60% less than that of CA winter cultivars. We conclude that a short-term exposure of spring cultivars to elevated CO2 cannot compensate for the cold acclimation-induced inhibition of Asat. Cold acclimation of spring cultivars appeared to exacerbate Rubisco CO2 substrate limitations present under ambient CO2. Furthermore, CA spring cultivars were unable to adjust their short-term temperature sensitivity of Asat under elevated CO2 compared with the winter cultivars.


1978 ◽  
Vol 56 (23) ◽  
pp. 3000-3007 ◽  
Author(s):  
Julian B. Thomas ◽  
R. Glenn Anderson

Varieties of common wheat (Triticum aestivum L. em. Thell.) of low wheat–rye crossability showed increased seed set if pollinated with cultivated rye (Secale cereale L.) before the wheat spike attained maximum receptivity to wheat pollen (before the stage of first anthesis). After first anthesis the development of hybrid seed progressively deteriorated with increasing lateness of pollination. Premature or 'bud' pollination may be a useful approach for overcoming intergeneric cross-incompatibility barriers in the Triticineae.


Sign in / Sign up

Export Citation Format

Share Document