The proton transfer reaction between bis(2,4-dinitrophenyl)methane and nitrogen bases in dimethyl sulfoxide and toluene solvents

1991 ◽  
Vol 69 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Arnold Jarczewski ◽  
Grzegorz Schroeder ◽  
Kenneth T. Leffek

Rate constants have been measured for the proton and deuteron transfer reactions of bis(2,4-dinitrophenyl)methane (1) with 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo[5.4.0]undec-7-ene (DBU) in dimethyl sulfoxide (DMSO) and toluene solvents. Equilibrium constants, primary deuterium kinetic isotope effects, and activation parameters are reported. The reaction of 1 with DBU is faster than that with TMG by factors of 5 and 50 in toluene and DMSO respectively. The primary deuterium kinetic isotope effects, kH/kD = 7–9, which are independent of the polarity of the solvent, indicate an uncoupled mechanism of proton transfer and are in the "classical" region with little or no indication of a tunnelling contribution to the enthalpy of activation for these reactions. Key words: proton transfer, bis(2,4-dinitrophenyl)methane, deuterium isotope effects.

1990 ◽  
Vol 68 (12) ◽  
pp. 2242-2248 ◽  
Author(s):  
Wlodzimierz Galezowski ◽  
Arnold Jarczewski

The kinetics of the reaction of[Formula: see text](R = Me, Et, i-Pr; NPNE, NPNP, MNPNP respectively; L is H or D) with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) base in tetrahydrofuran (THF) and chlorobenzene (CB) solvents are reported. The products of these proton transfer reactions are ion pairs absorbing at λmax = 460–480 nm. The equilibrium constants in THF were [Formula: see text]and in CB [Formula: see text]for NPNE, NPNP, MNPNP respectively. The thermodynamic parameters of the reactions are also quoted. The substrate reacts with DBU in both THF and CB solvents in a normal second-order proton transfer reaction. In the case of deuteron transfer, isotopic D/H exchange is much faster than internal return. The reactions show low values of enthalpy of activation ΔH* = 14.3, 18.1, 24.2 and 13.0, 15.1, 18.6 kJmol−1 for NPNE, NPNP, and MNPNP in THF and CB respectively, and large negative entropies of activation −ΔS* = 141, 139, 146; 140, 146, 160 J mol−1 deg−1 for the same sequence of substrates and solvents. The kinetic isotope effects are large, (kH/kD)20°c = 12.2, 13.0, 10.1; 12.9, 12.0, 10.2 for the above sequence of substrates and solvents, and show no difference with changes in either steric hindrance of the C-acids or polarity of the solvents. Keywords: proton transfer, kinetic isotope effect.


2001 ◽  
Vol 79 (7) ◽  
pp. 1128-1134 ◽  
Author(s):  
Iwona Grzeskowiak ◽  
Wtodzimierz Galezowski ◽  
Arnold Jarczewski

The rates of proton transfer reactions between C-acids of the series of nitroalkanes with increasing bulk of R = H, Me, Et, i-Pr substituent as: 4-nitrophenylnitromethane (0), 1-(4-nitrophenyl)-1-nitroethane (1), 1-(4-nitrophenyl)-1-nitropropane (2), 2-methyl-1-(4-nitrophenyl)-1-nitropropane (3) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) have been measured in acetonitrile at pseudo-first-order conditions. The product of the proton transfer reaction with MTBD in acetonitrile is dissociated into free ions while that of the TBD reaction is composed of a comparable amount of ions and ion pairs. The second-order rate constants (k2H) for these bases of almost equal strength in acetonitrile (pKa = 24.70, 24.97 for MTBD and TBD) and C-acids 1, 2, and 3 are: 317, 86, 7.6 dm3 mol–1 s–1; and 15 200, 5300, 1100 dm3 mol–1 s–1, respectively. The appropriate primary deuterium kinetic isotope effects (kH/kD) are 12.5, 10.8, 6.9; and 9.9, 11.2, 12.6. The influence of steric hindrance brought by reacting C-acids and bases is discussed. The different structure of the transition states and the products as mono- and double-hydrogen bonded complexes for these series of C-acids and MTBD and TBD bases is manifested by a distinct reaction mechanism which we attempt to explain.Key words: proton transfer, kinetic study, C-acids, organic bases, acetonitrile, kinetic isotope effects.


2013 ◽  
Vol 135 (7) ◽  
pp. 2509-2511 ◽  
Author(s):  
Michael D. Toney ◽  
Joan Nieto Castro ◽  
Trevor A. Addington

Author(s):  
Willem Siebrand ◽  
Zorka Smedarchina ◽  
Antonio Fernández-Ramos

1986 ◽  
Vol 64 (6) ◽  
pp. 1021-1025 ◽  
Author(s):  
Arnold Jarczewski ◽  
Grzegorz Schroeder ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

Rate constants for the proton and deuteron transfer from 1-(4-nitrophenyl)-1-nitroethane to cesium n-propoxide in n-propanol have been measured under pseudo-first-order conditions with an excess of base for four temperatures between 5 and 35 °C. Using literature values of the fraction of cesium n-propoxide ion pairs that are dissociated into free ions, separate second-order rate constants for the proton and deuteron transfer to the ion pair and to the free ion have been calculated. The cesium n-propoxide ion pair is about 2.8 times more reactive than the free n-propoxide ion. The primary kinetic isotope effects for the two reactions are the same (kH/kD = 6.1–6.3 at 25 °C) within experimental error. The enthalpy of activation is smaller for the ion-pair reaction and the entropy of activation more negative than for the free-ion reaction. For proton transfer, ΔH±ion pair = 8.3 ± 0.2 kcal mol−1, ΔH±ion = 9.6 ± 1.0 kcal mol−1, ΔS±ion pair = −12.3 ± 0.6 cal mol−1 deg−1, ΔS±ion = −10.1 ± 3.4 cal mol−1 deg−1. The greater reactivity of the ion pair relative to the free ion is interpreted in terms of the weaker solvation shell of the ion pair in the initial state.


Sign in / Sign up

Export Citation Format

Share Document