Low-frequency stimulation of the perforant path produces long-term potentiation in the dentate gyrus of unanesthetized rats

1983 ◽  
Vol 61 (10) ◽  
pp. 1156-1161 ◽  
Author(s):  
R. W. Skelton ◽  
J. J. Miller ◽  
A. G. Phillips

Brief periods of high-frequency stimulation of hippocampal afferents produce long-term potentiation (LTP) of synaptic transmission, but the minimum frequency capable of inducing this alteration in synaptic efficacy has not been specified. The present study used the repeated measurement of input–output curves in the perforant path – dentate gyrus system of freely moving rats to monitor synaptic efficacy and found that stimulation at 0.2 Hz, but not 0.04 Hz produced LTP. These results suggest that the minimum stimulation frequency capable of producing LTP is lower than previously described. Possible reasons for the discrepancy between the present and previous findings are discussed, along with the implications of low-frequency potentiation.

1997 ◽  
Vol 77 (2) ◽  
pp. 571-578 ◽  
Author(s):  
Valérie Doyère ◽  
Bolek Srebro ◽  
Serge Laroche

Doyère, Valérie, Bolek Srebro, and Serge Laroche. Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J. Neurophysiol. 77: 571–578, 1997. We examined the characteristics of heterosynaptic long-term depression (LTD) and depotentiation of previously established long-term potentiation (LTP) in the medial and lateral entorhinal afferents to the dentate gyrus in the awake rat. Rats were prepared for chronic recording of dentate gyrus evoked potentials to activation of the medial and lateral perforant paths. This study in awake rats confirms that heterosynaptic LTD can be induced at inactive medial perforant path synapses in conjunction with the induction of LTP produced by high-frequency stimulation of the lateral perforant path. This form of LTD was long lasting and reversible by tetanic stimulation delivered to the depressed pathway. In contrast, tetanic stimulation of the medial perforant path had only a small heterosynaptic effect on the lateral pathway, suggesting that the two input pathways to the dentate gyrus are not symmetrical in their ability to induce heterosynaptic LTD. We also examined the ability of high-frequency stimulation of one pathway to produce depotentiation of the other pathway. We found that when LTP was first induced in the medial perforant path, depotentiation was induced heterosynaptically by tetanization of the lateral pathway. Both newly established LTP (30 min) and LTP induced and saturated by repeated tetanic stimulation over several days can be depotentiated heterosynaptically. Moreover, depotentiation of the medial perforant path synapses was found to be linearly correlated with the magnitude of LTP induced in the lateral perforant path synapses, and subsequent tetanic stimulation of the depotentiated medial perforant path restored LTP to an extent that counterbalanced depotentiation. The saturation and repotentiation experiments provide clear support for the conclusion that the rapid reversal of LTP reflects true depotentiation of the medial input. Again, as with heterosynaptic LTD, tetanization of the medial perforant path had little effect on previously induced LTP in the lateral path. These results provide evidence that medial perforant path synapses can be depressed and depotentiated heterosynaptically. They suggest that in the intact rat synaptic changes in the afferents to the dentate gyrus from the lateral entorhinal cortex exert powerful control over ongoing or recent synaptic plasticity in the medial entorhinal afferents.


2003 ◽  
Vol 358 (1432) ◽  
pp. 675-687 ◽  
Author(s):  
M. L. Errington ◽  
P. T. Galley ◽  
T. V. P. Bliss

We have used a glutamate-specific dialysis electrode to obtain real-time measurements of changes in the concentration of glutamate in the extracellular space of the hippocampus during low-frequency stimulation and following the induction of long-term potentiation (LTP). In the dentate gyrus, stimulation of the perforant path at 2 Hz for 2 min produced a transient increase in glutamate current relative to the basal value at control rates of stimulation (0.033 Hz). This activity-dependent glutamate current was significantly enhanced 35 and 90 min after the induction of LTP. The maximal 2 Hz signal was obtained during post-tetanic potentiation (PTP). There was also a more gradual increase in the basal level of extracellular glutamate following the induction of LTP. Both the basal and activity-dependent increases in glutamate current induced by tetanic stimulation were blocked by local infusion of the N -methyl-D-aspartate receptor antagonist D-APV. In areas CA1 and CA3 we were unable to detect a 2 Hz glutamate signal either before or after the induction of LTP, possibly owing to a more avid uptake of glutamate in the pyramidal cell fields. These results demonstrate that LTP in the dentate gyrus is associated with a greater concentration of extracellular glutamate following activation of potentiated synapses, either because potentiated synapses release more transmitter per impulse, or because of reduced uptake by glutamate transporters. We present arguments favouring increased release rather than decreased uptake.


2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


2003 ◽  
Vol 90 (1) ◽  
pp. 32-38 ◽  
Author(s):  
David J. Froc ◽  
Brennan Eadie ◽  
Amanda M. Li ◽  
Karl Wodtke ◽  
Maric Tse ◽  
...  

Hippocampal slices obtained from C57BL/6 mice (3–25 mo) were used to investigate the effects of aging on excitatory postsynaptic potentials (EPSPs) elicited in dentate gyrus with lateral perforant path stimulation. The maximal amplitude of the EPSP, as well as the degree of paired-pulse facilitation, was significantly reduced in animals aged 12 mo or more compared with younger animals (<12 mo). Although all animals showed equivalent short-term potentiation (STP) in response to high-frequency stimulation, this did not translate into a long-lasting increase in synaptic efficacy in the older animals. A significant degree of long-term potentiation (LTP) of synaptic efficacy was only observed in animals <12 mo of age when measured 30 min after induction. Blocking GABAA-mediated inhibition significantly enhanced STP in younger and older animals; however, a significant degree of LTP was again only observed in slices taken from younger animals. These data indicate that the lateral perforant path input to the dentate gyrus is altered by the aging process, and that this results in a reduction in the capacity of this input to exhibit long-lasting synaptic plasticity.


2008 ◽  
pp. 269-273
Author(s):  
A Viggiano ◽  
E Viggiano ◽  
M Monda ◽  
A Viggiano ◽  
S Ascione ◽  
...  

Production of superoxide anions in the incubation medium of hippocampal slices can induce long-term potentiation (LTP). Other reactive oxygen species (ROS) such as hydrogen peroxide are able to modulate LTP and are likely to be involved in aging mechanisms. The present study explored whether intracerebroventricular (ICV) injection of oxidant or antioxidant molecules could affect LTP in vivo. With this aim in mind, field excitatory post-synaptic potentials (fEPSPs) elicited by stimulation of the perforant pathway were recorded in the dentate gyrus of the hippocampal formation in urethane-anesthetized rats. N-acetyl-Lcysteine, hydrogen peroxide (H2O2) or hypoxanthine/xanthineoxidase solution (a superoxide producing system) were administrated by ICV injection. The control was represented by a group injected with saline ICV. Ten minutes after the injection, LTP was induced in the granule cells of the dentate gyrus by high frequency stimulation of the perforant pathway. Neither the H2O2 injection or the N-acetyl-L-cysteine injection caused any variation in the fEPSP at the 10-min post-injection time point, whereas the superoxide generating system caused a significant increase in the fEPSP. Moreover, at 60 min after tetanic stimulation, all treatments attenuated LTP compared with the control group. These results show that ICV administration of oxidant or antioxidant molecules can modulate LTP in vivo in the dentate gyrus. Particularly, a superoxide producing system can induce potentiation of the synaptic response. Interestingly, ICV injection of oxidants or antioxidants prevented a full expression of LTP compared to the saline injection.


Sign in / Sign up

Export Citation Format

Share Document