scholarly journals Opportunities for Lattice QCD in quark and lepton flavor physics

2019 ◽  
Vol 55 (11) ◽  
Author(s):  
Christoph Lehner ◽  
◽  
Stefan Meinel ◽  
Tom Blum ◽  
Norman H. Christ ◽  
...  
2015 ◽  
Vol 30 (15) ◽  
pp. 1540013 ◽  
Author(s):  
Gero von Gersdorff

We review constraints from quark and lepton flavor violation on extra dimensional models with warped geometry, both in the minimal and the custodial model. For both scenarios, Kaluza–Klein (KK) masses that are large enough to suppress constraints from electroweak precision tests (EWPT) also sufficiently suppress all quark flavor and CP violation, with the exception of CP violation in [Formula: see text] mixing and (to a lesser extend) in [Formula: see text] mixing. In the lepton sector the minimal scenario leads to excessively large contributions to μ→eγ transitions, requiring KK masses of at least 20 TeV or larger.


Author(s):  
Florian Goertz

AbstractWe review lepton flavor physics and corresponding observables in the composite Higgs framework with partial compositeness, considering ‘UV complete’ setups as well as effective and holographic approaches. This includes anarchic flavor setups, scenarios with flavor symmetries, and minimal incarnations of the see-saw mechanism that naturally predict non-negligible lepton compositeness. We focus on lepton flavor violating processes, dipole moments, and on probes of lepton flavor universality, all providing stringent tests of partial compositeness. We discuss the expected size of effects in the different approaches to lepton flavor, which will be useful to understand how a composite lepton sector could look like, given up-to-date experimental constraints.


2012 ◽  
Vol 13 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Damir Bečirević ◽  
Vittorio Lubicz
Keyword(s):  

Author(s):  
Andrei Angelescu ◽  
Darius A. Faroughy ◽  
Olcyr Sumensari

Abstract Starting from a general effective Lagrangian for lepton flavor violation (LFV) in quark-lepton transitions, we derive constraints on the effective coefficients from the high-mass tails of the dilepton processes $$pp \rightarrow \ell _k \ell _l$$pp→ℓkℓl (with $$k\ne l$$k≠l). The current (projected) limits derived in this paper from LHC data with $$36~\mathrm {fb}^{-1}$$36fb-1 ($$3~\mathrm {ab}^{-1}$$3ab-1) can be applied to generic new physics scenarios, including the ones with scalar, vector and tensor effective operators. For purely left-handed operators, we explicitly compare these LHC constraints with the ones derived from flavor-physics observables, illustrating the complementarity of these different probes. While flavor physics is typically more constraining for quark-flavor violating operators, we find that LHC provides the most stringent limits on several flavor-conserving ones. Furthermore, we show that dilepton tails offer the best probes for charm-quark transitions at current luminosities and that they provide competitive limits for tauonic $$b\rightarrow d$$b→d transitions at the high-luminosity LHC phase. As a by-product, we also provide general numerical expressions for several low-energy LFV processes, such as the semi-leptonic decays $$K\rightarrow \pi \ell ^{\pm }_k \ell ^{{\mp }}_l$$K→πℓk±ℓl∓, $$B\rightarrow \pi \ell ^{\pm }_k \ell ^{{\mp }}_l$$B→πℓk±ℓl∓ and $$B\rightarrow K^{(*)} \ell ^{\pm }_k \ell ^{{\mp }}_l$$B→K(∗)ℓk±ℓl∓.


Sign in / Sign up

Export Citation Format

Share Document