lepton flavor violation
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 60)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Vol 127 (27) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Nivedita Ghosh ◽  
Jayita Lahiri

AbstractTo explain the observed muon anomaly and simultaneously evade bounds from lepton flavor violation in the same model parameter space is a long-cherished dream. In view of a generalized Two Higgs Doublet Model, with a Yukawa structure as a perturbation of Type-X, we are able to get substantial parameter space satisfying these criteria. In this work, we focus on a region with “wrong-sign” lepton-Yukawa coupling which gives rise to interesting phenomenological consequences. Performing a simple cut-based analysis, we show that at 14 TeV run of the LHC with $$300 \mathrm{{fb}}^{-1}$$ 300 fb - 1 integrated luminosity, part of the model parameter space can be probed with significance "Equation missing" which further improves with Artificial Neural Network analysis.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Hong-Xin Wang ◽  
Lei Wang ◽  
Yang Zhang

AbstractWe examine the possibilities of accommodating the muon $$g-2$$ g - 2 anomaly released by Fermilab in the 2HDM with a discrete $$Z_4$$ Z 4 symmetry in which an inert Higgs doublet field ($$H,~A,~H^\pm $$ H , A , H ± ) has the lepton flavor violation $$\mu $$ μ –$$\tau $$ τ interactions. We assume the Yukawa matrices to be real and symmetrical and investigate the case of light H (5 GeV $$<m_H<$$ < m H < 115 GeV). After imposing relevant theoretical and experimental constraints, especially for the multi-lepton searches at the LHC, we find that the muon $$g-2$$ g - 2 anomaly can be explained within $$2\sigma $$ 2 σ confidence level in the region of 5 GeV $$<m_H<20$$ < m H < 20  GeV, 130 GeV $$< m_A~(m_{H^\pm })<$$ < m A ( m H ± ) < 610 GeV, and 0.005 $$<\rho<$$ < ρ < 0.014. Meanwhile, the $$\chi ^2_\tau $$ χ τ 2 fitting the data of lepton flavour universality in the $$\tau $$ τ decays approaches to the SM prediction.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kingman Cheung ◽  
Abner Soffer ◽  
Zeren Simon Wang ◽  
Yu-Heng Wu

Abstract We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), X, at the B-factory experiment Belle II. We focus on production of the ALP in the tau decays τ → Xl with l = e, μ, followed by its decay via X → l−l+. The ALP can be either promptly decaying or long-lived. We perform Monte-Carlo simulations, recasting a prompt search at Belle for lepton-flavor-violating τ decays, and propose a displaced-vertex (DV) search. For both types of searches, we derive the Belle II sensitivity reaches in both the product of branching fractions and the ALP coupling constants, as functions of the ALP mass and lifetime. The results show that the DV search exceeds the sensitivity reach of the prompt search to the relevant branching fractions by up to about a factor of 40 in the long decay length regime.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
K. Uno ◽  
K. Hayasaka ◽  
K. Inami ◽  
I. Adachi ◽  
...  

Abstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → ℓ±γ (ℓ = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → ℓ±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ B (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Chuan-Hung Chen ◽  
Takaaki Nomura

Abstract The quartic scalar coupling λ5 term, which violates the lepton-number by two units in the Ma-model, is phenomenologically small when the model is applied to the lepton-flavor violation (LFV) processes. In order to dynamically generate the λ5 parameter through quantum loop effects and retain the dark matter (DM) candidate, we extend the Ma-model by adding a Z2-odd vector-like lepton doublet and a Z2-even Majorana singlet. With the new couplings to the Higgs and gauge bosons, the observed DM relic density can be explained when the upper limits from the DM-nucleon scattering cross sections are satisfied. In addition to the neutrino data and LFV constraints, it is found that the DM relic density can significantly exclude the free parameter space. Nevertheless, the resulting muon g − 2 mediated by the inert charged-Higgs can fit the 4.2σ deviation between the experimental measurement and the SM result, and the branching ratio for τ → μγ can be as large as the current upper limit when the rare μ → (eγ, 3e) decays are suppressed. In addition, it is found that the resulting BR(τ → μρ) can reach the sensitivity of Belle II with an integrated luminosity of 50 ab−1.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Tong Li ◽  
Michael A. Schmidt ◽  
Chang-Yuan Yao ◽  
Man Yuan

AbstractAny observation of charged lepton flavor violation (CLFV) implies the existence of new physics beyond the SM in charged lepton sector. CLFV interactions may also contribute to the muon magnetic moment and explain the discrepancy between the SM prediction and the recent muon $$g-2$$ g - 2 precision measurement at Fermilab. We consider the most general SM gauge invariant Lagrangian of $$\Delta L=0$$ Δ L = 0 bileptons with CLFV couplings and investigate the interplay of low-energy precision experiments and colliders in light of the muon magnetic moment anomaly. We go beyond previous work by demonstrating the sensitivity of the LHC, the MACE experiment, a proposed muonium-antimuonium conversion experiment, and a muon collider. Currently-available LHC data is already able to probe unexplored parameter space via the CLFV process $$pp\rightarrow \gamma ^*/Z^*\rightarrow \ell _1^\pm \ell _1^\pm \ell _2^\mp \ell _2^\mp $$ p p → γ ∗ / Z ∗ → ℓ 1 ± ℓ 1 ± ℓ 2 ∓ ℓ 2 ∓ .


2021 ◽  
Vol 13 (3) ◽  
pp. 1057-1074
Author(s):  
P. Verma ◽  
- Vivekanand ◽  
K. Chaturvedi

The search for lepton flavor violation in charged lepton decays is a highly sensitive tool to look for physics beyond the Standard Model. Among the possible processes, µ-decays are considered to have the largest discovery potential in most of the standard model extensions. Many searches have been performed in the past, but no evidence has been found so far. In this paper, we have reviewed the current theoretical and experimental status of the field of muon to electron decay and its potential to search for new physics beyond the Standard Model. Future prospects of experiments for further progress in this field are also discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nayana Gautam ◽  
R. Krishnan ◽  
Mrinal Kumar Das

We study the effect of sterile neutrino on some low-scale processes in the framework of the minimal extended seesaw (MES). MES is the extension of the seesaw mechanism with the addition of sterile neutrino of intermediate mass. The MES model in this work is based on Δ(96) × C2 × C3 flavor symmetry. The structures of mass matrices in the framework lead to TM1 mixing with μ–τ symmetry. The model predicts the maximal value of the Dirac CP phase. We carry out our analysis to study the new physics contributions from the sterile neutrino to different charged lepton flavor violation (cLFV) processes involving muon and tau leptons as well as neutrinoless double beta decay (0νββ). The model predicts normal ordering (NO) of neutrino masses, and we perform the numerical analysis considering normal ordering (NO) only. We find that a heavy sterile neutrino can lead to cLFV processes that are within the reach of current and planned experiments. The sterile neutrino present in our model is consistent with the current limits on the effective neutrino mass set by 0νββ experiments.


Sign in / Sign up

Export Citation Format

Share Document