Dynamical Symmetry Breaking in Quantum Field Theories

10.1142/2170 ◽  
1994 ◽  
Author(s):  
V A Miransky
2001 ◽  
Vol 16 (11) ◽  
pp. 1913-1925 ◽  
Author(s):  
HARUHIKO TERAO

The advantageous points of ERG in applications to non-perturbative analyses of quantum field theories are discussed in comparison with the Schwinger-Dyson equations. First we consider the relation between these two formulations specially by examining the large N field theories. In the second part we study the phase structure of dynamical symmetry breaking in three dimensional QED as a typical example of the practical application.


1991 ◽  
Vol 06 (26) ◽  
pp. 2443-2452 ◽  
Author(s):  
V. P. GUSYNIN ◽  
V. A. MIRANSKY

An approach to the low energy effective action based on the formalism of Green's functions of composite is developed in field theories with dynamical symmetry breaking. The effective action of the gauged Nambu-Jona-Lasinio model is derived as a series in powers of the derivatives of composite fields. The mechanism of scale symmetry breaking in this model is discussed.


1989 ◽  
Vol 323 (3) ◽  
pp. 493-512 ◽  
Author(s):  
William A. Bardeen ◽  
C.N. Leung ◽  
S.T. Love

2003 ◽  
Vol 18 (29) ◽  
pp. 5363-5419 ◽  
Author(s):  
YUE-LIANG WU

Through defining irreducible loop integrals (ILI's), a set of consistency conditions for the regularized (quadratically and logarithmically) divergent ILI's are obtained to maintain the generalized Ward identities of gauge invariance in non-Abelian gauge theories. The ILI's of arbitrary loop graphs can be evaluated from the corresponding Feynman loop integrals by adopting an ultraviolet (UV) divergence preserving parameter method. Overlapping UV divergences are explicitly shown to be factorizable in the ILI's and be harmless via suitable subtractions. A new regularization and renormalization method is presented in the initial space–time dimension of the theory. The procedure respects unitarity and causality. Of interest, the method leads to an infinity free renormalization and meanwhile maintains the symmetry principles of the original theory except the intrinsic mass scale caused conformal scaling symmetry breaking and the anomaly induced symmetry breaking. Tadpole graphs of Yang–Mills gauge fields are found to play an essential role for maintaining manifest gauge invariance via cancellations of quadratically divergent ILI's. Quantum field theories (QFT's) regularized through the new method are well defined and governed by a physically meaningful characteristic energy scale (CES) Mc and a physically interesting sliding energy scale (SES) μs which can run from μs ~ Mc to a dynamically generated mass gap μs = μc or to μs = 0 in the absence of mass gap and infrared (IR) problem. For Mc → ∞, the initial UV divergent properties of QFT's are recovered and well-defined. In fact, the CES Mc and SES at μs = μc play the role of UV and IR cutoff energy scales respectively. It is strongly indicated that the conformal scaling symmetry and its breaking mechanism play an important role for understanding the mass gap and quark confinement. The new method is developed to be applicable for both underlying renormalizable QFT's and effective QFT's. It also leads to a set of conjectures on mathematically interesting numbers and functional limits which may provide deep insights in mathematics.


Sign in / Sign up

Export Citation Format

Share Document