COMPUTATION OF THE PROJECTIVE DIMENSION OF FINITELY GENERATED MODULES OVER POLYNOMIAL RINGS

Author(s):  
ZHONG YI
2008 ◽  
Vol 102 (2) ◽  
pp. 206 ◽  
Author(s):  
Sean Sather-Wagstaff ◽  
Diana White

We extend Auslander and Buchsbaum's Euler characteristic from the category of finitely generated modules of finite projective dimension to the category of modules of finite G-dimension using Avramov and Martsinkovsky's notion of relative Betti numbers. We prove analogues of some properties of the classical invariant and provide examples showing that other properties do not translate to the new context. One unexpected property is in the characterization of the extremal behavior of this invariant: the vanishing of the Euler characteristic of a module $M$ of finite G-dimension implies the finiteness of the projective dimension of $M$. We include two applications of the Euler characteristic as well as several explicit calculations.


Author(s):  
Hans-Bjørn Foxby ◽  
Esben Bistrup Halvorsen

AbstractThe new intersection theorem states that, over a Noetherian local ring R, for any non-exact complex concentrated in degrees n,…,0 in the category P(length) of bounded complexes of finitely generated projective modules with finite-length homology, we must have n ≥ d = dim R.One of the results in this paper is that the Grothendieck group of P(length) in fact is generated by complexes concentrated in the minimal number of degrees: if Pd(length) denotes the full subcategory of P(length) consisting of complexes concentrated in degrees d,…0, the inclusion Pd(length) → P(length) induces an isomorphism of Grothendieck groups. When R is Cohen–Macaulay, the Grothendieck groups of Pd(length) and P(length) are naturally isomorphic to the Grothendieck group of the category M(length) of finitely generated modules of finite length and finite projective dimension. This and a family of similar results are established in this paper.


2001 ◽  
Vol 64 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Sang Bum Lee

For a commutative domain R with 1, R-module M is called a semi-Baer module if for all divisible R-modules D. We show that finitely generated modules of projective dimension at most 1 are semi-Baer modules and if R is Prüfer or Matlis, then all modules of projective dimension at most 1 are semi-Baer modules.


2012 ◽  
Vol 55 (1) ◽  
pp. 85-96
Author(s):  
SEAN SATHER-WAGSTAFF

AbstractThis paper builds on work of Hochster and Yao that provides nice embeddings for finitely generated modules of finite G-dimension, finite projective dimension or locally finite injective dimension. We extend these results by providing similar embeddings in the relative setting, that is, for certain modules of finite GC-dimension, finite C-projective dimension, locally finite C-injective dimension or locally finite C-injective dimension where C is a semidualizing module. Along the way, we extend some results for modules of finite homological dimension to modules of locally finite homological dimension in the relative setting.


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


1984 ◽  
Vol 12 (15) ◽  
pp. 1795-1812 ◽  
Author(s):  
Luigi Salce ◽  
Paolo Zanardo

2018 ◽  
Vol 17 (11) ◽  
pp. 1850202 ◽  
Author(s):  
Ahad Rahimi

Let [Formula: see text] be a Noetherian local ring and [Formula: see text] a finitely generated [Formula: see text]-module. We say [Formula: see text] has maximal depth if there is an associated prime [Formula: see text] of [Formula: see text] such that depth [Formula: see text]. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen–Macaulay modules with maximal depth are classified. Finally, the attached primes of [Formula: see text] are considered for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document