CURRENT STATUS OF TYPE IA SUPERNOVAE THEORY AND THEIR ROLE IN COSMOLOGY

Author(s):  
S. BLINNIKOV
2005 ◽  
Vol 192 ◽  
pp. 183-188
Author(s):  
Peter A. Milne ◽  
G.Grant Williams

SummaryAt late times, the energy deposition in the ejecta of type Ia supernovae is dominated by the slowing of energetic positrons produced in 56Co → 56Fe decays. Through comparisons of simulations of energy deposition in SN Ia models with observed light curves from supernovae, we study the positron transport and thus the magnetic fields of SNe Ia. In this paper, we summarize the current status of these investigations, emphasizing the observations made of two recent SNe Ia, 1999by and 2000cx.


2005 ◽  
Vol 192 ◽  
pp. 327-332
Author(s):  
D.N. Sauer ◽  
A.W.A. Pauldrach ◽  
T. Hoffmann ◽  
W. Hillebrandt

SummaryWe present the current status of our construction of synthetic spectra for type Ia supernovae. These properly take into account the effects of NLTE and an adequate representation of line blocking and blanketing. The models are based on a sophisticated atomic database. We show that the synthetic spectrum reproduces the observed spectrum of ‘normal’ SN-Ia near maximum light from the UV to the near-IR. However, further improvements are necessary before truly quantitative analyses of observed SN-Ia spectra can be performed. In particular, the inner boundary condition has to be fundamentally modified. This is due to the dominance of electron scattering over true absorption processes coupled with the flat density structure in these objects.


1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


2005 ◽  
Vol 620 (2) ◽  
pp. L87-L90 ◽  
Author(s):  
Xiaofeng Wang ◽  
Lifan Wang ◽  
Xu Zhou ◽  
Yu-Qing Lou ◽  
Zongwei Li

2013 ◽  
Vol 430 (1) ◽  
pp. 509-532 ◽  
Author(s):  
E. E. O. Ishida ◽  
R. S. de Souza

Sign in / Sign up

Export Citation Format

Share Document