scholarly journals THE CHERN-SIMONS FERMI LIQUID DESCRIPTION OF FRACTIONAL QUANTUM HALL STATES

1998 ◽  
pp. 91-194 ◽  
Author(s):  
Steven H. Simon
2020 ◽  
Vol 8 (2) ◽  
Author(s):  
oguz turker ◽  
Tobias Meng

We derive the low-energy theory of semi-quantized quantum Hall states, a recently observed class of gapless bilayer fractional quantum Hall states. Our theory shows these states to feature gapless quasiparticles of fractional charge coupled to an emergent Chern-Simons gauge field. These gapless quasiparticles can be understood as composites of electrons and Laughlin-like quasiparticles. We show that semi-quantized quantum Hall states exhibit perfect interlayer drag, host non-Fermi liquid physics, and serve as versatile parent states for fully gapped topological phases hosting anyonic excitations.


2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
L. V. Kulik ◽  
V. A. Kuznetsov ◽  
A. S. Zhuravlev ◽  
V. Umansky ◽  
I. V. Kukushkin

Sign in / Sign up

Export Citation Format

Share Document